New Hybrid Energy Method Could Fuel the Future of Rockets
April 11, 2019 | Purdue UniversityEstimated reading time: 2 minutes

Graphene, a new material with applications in biomedical technology, electronics, composites, energy and sensors, may soon help send rockets to space.
A new propellant formulation method to use graphene foams—material used in electronics, optics and energy devices—to power spacecraft is being developed in Purdue University’s Maurice J. Zucrow Laboratories, which is the largest academic propulsion lab in the world. The research is showing success at increasing burn rate of solid propellants that are used to fuel rockets and spacecraft.
“Our propulsion and physics researchers came together to focus on a material that has not previously been used in rocket propulsion, and it is demonstrating strong results,” said Li Qiao, an associate professor of aeronautics and astronautics in Purdue’s College of Engineering.
The research team, led by Qiao, developed methods of making and using compositions with solid fuel loaded on highly conductive, highly porous graphene foams for enhanced burn rates for the loaded solid fuel. They wanted to maximize the catalytic effect of metal oxide additives commonly used in solid propellant to enhance decomposition.
The graphene foam structures are also thermally stable, even at high temperatures, and can be reused. The developed compositions provide significantly improved burn rate and reusability.
Qiao said the graphene foam works well for solid propellants because it is super lightweight and highly porous, which means it has many holes in which scientists can pour fuel to help ignite a rocket launch.
The graphene foam has a 3D, interconnected structure to allow a more efficient thermal transport pathway for heat to quickly spread and ignite the propellant.
“Our patented technology provides higher performance that is especially important when looking at areas such as hypersonics,” Qiao said. “Our tests showed a burn rate enhancement of nine times the normal, using functionalized graphene foam structures.”
Qiao said the Purdue graphene foam discovery has applications for energy conversion devices and missile defense systems, along with other areas where tailoring nanomaterials for specific outcomes may be useful.
Qiao and the team have worked with the Purdue Research Foundation Office of Technology Commercialization to patent their technologies. They are looking for partners to license them.
Their work aligns with Purdue's Giant Leaps celebration, acknowledging the university’s global advancements in space exploration as part of Purdue’s 150th anniversary. Space exploration, including propellants research, is one of the four themes of the yearlong celebration’s Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.
About Purdue Research Foundation Office of Technology Commercialization
The Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities. The office is managed by the Purdue Research Foundation, which received the 2016 Innovation and Economic Prosperity Universities Award for Innovation from the Association of Public and Land-grant Universities.
Suggested Items
Baker Hughes' Waygate Unveils Nanotom HR for Advanced Inspection
05/06/2025 | Baker HughesWaygate Technologies, a Baker Hughes business and global leader in nondestructive testing (NDT) solutions for industrial inspection, unveiled its new extremely high-resolution computed tomography (CT) system, Phoenix Nanotom® HR (High Resolution) at the Control 2025 show in Stuttgart, Germany.
Hon Hai Research Institute Demonstrates Superiority of Shallow Quantum Circuits Beyond Prior Understanding
05/05/2025 | Hon Hai Technology GroupHon Hai Research Institute (HHRI), in a milestone collaborative effort, has demonstrated that parallel quantum computation can exhibit greater computational power than previously recognized, with its research results accepted for publication in the prestigious journal Nature Communications.
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
MICROOLED Announces Partnership with Vortex Optics and Brand New US Headquarters
05/02/2025 | BUSINESS WIREMICROOLED Inc., the leading global supplier of AMOLED displays, is proud to announce their partnership with Vortex Optics to advance the development of high-performance weapon sights for optical sighting systems.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.