Super-Fast Robot Microscope to Search for Dark Matter
April 11, 2019 | NUST MISISEstimated reading time: 2 minutes

Researchers from the National University of science and technology MISIS (NUST MISIS, Moscow, Russia) and the National Institute for Nuclear Physics (INFN, Naples, Italy) have developed a simple and cost-effective technology that allows increasing the speed of the automated microscopes (AM) by 10-100 times. The microscopes’ speed growth will help scientists in many fields: medicine, nuclear physics, astrophysics, neutrino physics, archeology, geology, volcanology, archeology. The development report was published in the Scientific Reports journal of the Nature publishing house.
“In our study, we tested the technology of fully automated optical scanning of thin samples, on which the new generation of automated microscopes will be based. We analyzed the performance and estimated the achievable scanning speed in comparison with traditional methods, — said one of the authors, a researcher from NUST MISIS and INFN Andrey Alexandrov.
Modern science requires the use of high-speed scanning systems, capable of conducting a high-precision analysis of the samples internal structure, of obtaining and analyzing large amounts of information. AM of the new generation are such systems: robots, equipped with high-precision mechanics, high-quality optics and high-speed video camera. AM works million times faster than a human microscope operator and can work 24 hours a day without getting tired.
Modern AMs are used for optical scanning of emulsion track detectors. Multi-tone detectors contain millions of emulsion films. Since the speed of AM limits the applicability of detectors, scientists are actively looking for ways to make the existing robots faster, as well as to create new, much faster generations. Such robotic microscopes will be indispensable in an experiment to search for dark matter, where it will be necessary to analyze tens of tons of nano-emulsion trackers with unprecedented accuracy in the shortest possible time.
“The machine vision technology allows AM to recognize objects in real time and independently decide whether to process their images or move to another point. Currently, the parallel computing technology CUDA and the GPU video cards are actively used to process a large (~2 GB/s from each video camera) image stream and accelerate intensive computing. We have also implemented the technology of the lens focal plane rotation,” Alexandrov added.
According to the scientist, "the efficiency and accuracy of this approach turned out to be comparable with the traditional ones, while the scanning speed is proportional to the number of cameras installed, which suggests significant progress.
Next, the scientists intend to create and test a new generation working prototype using the technology of focal plane rotation implemented by them. The 10–100 times increased speed of such microscopes can significantly increase the volume of data processed, reduce the time of their analysis without large financial expenditures, and expand the limits of applicability of the emulsion track detector method".Future scientific experiments operating with such detectors will search for dark matter particles, study neutrino physics, study ion fragmentation for the needs of hadron cancer therapy and protect interplanetary missions crews from cosmic rays," Alexandrov said.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.
DARPA, State of New Mexico Establish Framework to Advance Quantum Computing
09/08/2025 | DARPAAs part of the Quantum Benchmarking Initiative (QBI), DARPA signed an agreement with the State of New Mexico’s Economic Development Department to create the Quantum Frontier Project.
LPKF Strengthens LIDE Technology Leadership with New Patent Protection in Korea
09/04/2025 | LPKFLPKF Laser & Electronics SE today announced that its groundbreaking LIDE (Laser Induced Deep Etching) technology has received additional patent protection in Korea through the Korean Patent Office (KPCA), effective September 1, 2025.
UHDI Fundamentals: UHDI Technology and Industry 4.0
09/03/2025 | Anaya Vardya, American Standard CircuitsUltra high density interconnect (UHDI) technology is rapidly transforming how smart systems are designed and deployed in the context of Industry 4.0. With its capacity to support highly miniaturized, high-performance, and densely packed electronics, UHDI is a critical enabler of the smart, connected, and automated industrial future. Here, I’ll explore the synergy between UHDI and Industry 4.0 technologies, highlighting applications, benefits, and future directions.