Washable Electronic Textiles to Usher in an Era of Even Smarter Wearable Products
June 21, 2019 | Korea Institute of Science and TechnologyEstimated reading time: 2 minutes

With the wearable electronic device market having firmly established itself in the 21st century, active research is being conducted on electronic textiles, which are textiles (e.g. clothing) capable of functioning like electronic devices. Fabric-based items are flexible and can be worn comfortably all day, making them the ideal platform for wearable electronic devices.
Image Caption: A new electronic textile developed by KIST's research team that turns on LEDs on top of fabric.
The research team of Dr. Jung-ah Lim of the Korea Institute of Science and Technology (KIST, president: Byung-gwon Lee) announced that it has developed a fibrous transistor that has a fiber structure, giving it the characteristics of a textile while allowing it to be inserted into clothing and retain an adequate level of functionality even after being washed (Advanced Materials, "A New Architecture for Fibrous Organic Transistors Based on a Double-Stranded Assembly of Electrode Microfibers for Electronic Textile Applications").
Existing technology involves physically attaching a solid electronic device (sensor, etc.) to the surface of clothing or using conductive textiles to connect various devices, with little to no attention paid to the wearer's comfort. Existing thread-type transistors are made by depositing a flat transistor onto a single conductive thread.
Electrodes made in this manner require a high voltage in order to be activated, but the low current that is generated is often insufficient to activate display devices (LED, etc.). Until now, it was also difficult to create electronic circuits through contact with other devices (for woven fabrics) or to apply a protective layer to the transistor to allow for washing.
The transistor developed by the KIST research team is made by connecting twisted electrodes. Using this structure, the team was able to adjust the length of the threads and thickness of the semiconductor to obtain currents over 1,000-times higher than those possible using existing transistors, even at low voltages (below -1.3V).
Through tests, Lim's team confirmed that even after bending the transistor or winding it around a cylindrical object over 1,000 times (with a resulting thickness of approximately 7 millimeters), it maintained a performance level of over 80 percent. The team also announced that the performance level remained adequate even after washing the transistor in water containing detergent. The team was also able to activate an LED device with the transistor inserted between the threads of clothing and measure electrocardiogram signals through signal amplification.
Lim said, "The results of this study point to a new device structure that can overcome the limitations of current electronic textiles, including low current, high activation voltage, and low resilience to washing. We expect that our study will contribute to the development of even smarter wearable products in the future, including next-generation wearable computers and smart clothing that can monitor vital signs."
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Smartphone Production Rises 4% QoQ in 2Q25 as Inventory Adjustment Ends
09/12/2025 | TrendForceTrendForce’s latest investigations reveal that global smartphone production reached 300 million units in 2Q25, up 4% QoQ and 4.8% YoY, driven by seasonal demand and the recovery of brands such as Oppo and Transsion following inventory adjustments.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/12/2025 | Marcy LaRont, I-Connect007We may be post-Labor Day, but it is still hot-hot-hot here in the great state of Arizona—much like our news cycles, which have continued to snap, crackle, and pop with eye-raising headlines over this past week. In broader global tech news this week, AI and tariff-type restrictions continues to dominate with NVIDIA raising its voice against U.S. lawmakers pushing chip restrictions, ASML investing in a Dutch AI start-up company to the tune of $1.5 billion, and the UAE joining the ranks of the U.S. and China in embracing “open source” with their technology in hopes of accelerating their AI position.
Delta Electronics Posts 26.7% Growth in Sales Revenues for August
09/12/2025 | Delta ElectronicsDelta Electronics, Inc. announced its consolidated sales revenues for August 2025 totaled NT$47,860 million, a 26.7 percent increase as compared to NT$37,770 million for August 2024 and a 5.4 percent increase as compared to NT$45,397 million for July 2025.
Flex Named to TIME's World's Best Companies List for Third Consecutive Year
09/12/2025 | FlexFlex announced its inclusion on the TIME World's Best Companies 2025 list. This marks the third consecutive year the company was included in this prestigious ranking, which recognizes top-performing companies across the globe.
Direct Imaging System Market Size to Hit $4.30B by 2032, Driven by Increasing Demand for High-Precision PCB Manufacturing
09/11/2025 | Globe NewswireAccording to the SNS Insider, “The Direct Imaging System Market size was valued at $2.21 Billion in 2024 and is projected to reach $4.30 Billion by 2032, growing at a CAGR of 8.68% during 2025-2032.”