A Wearable Vibration Sensor for Accurate Voice Recognition
June 25, 2019 | POSTECHEstimated reading time: 2 minutes
A voice-recognition feature can be easily found on mobile phones these days. Oftentimes, we experience an incident where a speech recognition application is activated in the middle of a meeting or a conversation in the office. Sometimes, it is not activated at all regardless of numbers of times we call out the application. It is because a mobile phone uses a microphone which detects sound pressure to recognize voice, and it is easily affected by surrounding noise and other obstacles.
Professor Kilwon Cho of Chemical Engineering and Professor Yoonyoung Chung of Electronic and Electric Engineering from POSTECH successfully developed a flexible and wearable vibration responsive sensor. When this sensor is attached to a neck, it can precisely recognize voice through vibration of the neck skin and is not affected by ambient noise or the volume of sound.
The conventional vibration sensors recognize voice through air vibration and the sensitivity decreases due to mechanical resonance and damping effect, therefore are not capable of measuring voices quantitatively. So, ambient sound or obstacles such as mouth mask can affect its accuracy of voice recognition and it cannot be used for security authentication.
In this study, the research group demonstrated that the voice pressure is proportional to the acceleration of neck skin vibration at various sound pressure levels from 40 to 70 dBSPL and they developed a vibration sensor utilizing the acceleration of skin vibration. The device, which is consisted of an ultrathin polymer film and a diaphragm with tiny holes, can sense voices quantitively by measuring the acceleration of skin vibration.
They also successfully exhibited that the device can accurately recognize voice without vibrational distortion even in the noisy environment and at a very low voice volume with a mouth mask worn.
This research can be further extended to various voice-recognition applications such as an electronic skin, human-machine interface, wearable vocal healthcare monitoring device.
Professor Kilwon Cho explained the meaning of this study in his interview. “This research is very meaningful in a way that it developed a new voice-recognition system which can quantitively sense and analyze voice and is not affected by the surroundings. It took a step forward from the conventional voice-recognition system that could only recognize voice qualitatively.”
This research was supported by the Center for Advanced Soft Electronics under the Global Frontier Research Program of The Ministry of Science and ICT, Korea. Further results of this study can be found on the website of Nature Communications, published on the 18th of June.
Suggested Items
SIA Applauds CHIPS Award for Semiconductor Research Corporation’s SMART USA Institute
11/21/2024 | SIAThe Semiconductor Industry Association (SIA) released the following statement from SIA President and CEO John Neuffer commending the announcement that the U.S. Department of Commerce and the Semiconductor Research Corporation Manufacturing Consortium Corporation (SRC) are entering negotiations for the Commerce Department to provide SRC $285 million to establish and operate the CHIPS Manufacturing USA Institute for Digital Twins.
Gartner Forecasts MENA IT Spending to Grow 7.4% in 2025
11/20/2024 | Gartner, Inc.IT spending in the Middle East and North Africa (MENA) region is projected to total $230.7 billion in 2025, an increase of 7.4% from 2024, according to the latest forecast by Gartner, Inc.
North American Wi-Fi Sensing CPE Installations to Surge to 112 Million by 2030
11/15/2024 | ABI ResearchWi-Fi Sensing uses Wi-Fi RF wave attenuation to detect presence and motion, offering a cost-effective, easily deployable solution. Major Wi-Fi chipset vendors supporting infrastructure markets are backing this technology.
ISAC Has Groundbreaking Potential to Transform 6G Networks After 2033
11/11/2024 | ABI ResearchIntegrated Sensing and Communication (ISAC) is a groundbreaking concept aiming to turn mobile networks into radars that can sense moving objects in their vicinity. According to a new report from global technology intelligence firm ABI Research, ISAC is a revolutionary innovation poised to transform the future of 6G networks.
Hitachi, UTokyo Promote Joint Research for the Practical Application of High-resolution Laser-PEEM in the Semiconductor Field
11/07/2024 | JCN NewswireHitachi High-Tech Corporation and The University of Tokyo have been conducting joint research into practical applications of high-resolution Laser-PEEM(1) developed by UTokyo in the semiconductor manufacturing process.