Stretching Electronics: The Form Factor Innovation Driving New Market Opportunities
June 26, 2019 | IDTechExEstimated reading time: 3 minutes
IDTechEx focuses on many different emerging technologies, many of which are related to the development of new form factors in electronics. Whilst many people are familiar with flexible electronics, whether it be in a folding smartphone, RFID tag or glucose test strip, the area of stretchable electronics has seen waves of innovation and commercial development, particularly over the last five years. The IDTechEx report “Stretchable and Conformal Electronics 2019-2029” provides all of the information that is required in order to understand this emerging trend and its commercial connotations.
"Stretchable" means different things to different people. The report explores the meaning of the term, looking at absolute measurements such as strain tolerance, number of cycles, and so on, but also considering wider connotations around the term. For example, the rise in interest and discussion of stretchable electronics has been closely linked to a parallel rise in interest around "wearables" or "wearable electronics". A prominent narrative within that sector states that the majority of devices that are "components-in-a-box" designs, often using like-for-like components with smartphones, strapped to the body, but that what the industry needs is to move to new form factors to recognise the need for comfortable, conformal devices to wear on the body. This links into certain product types, including Electronic Skin Patches, and E-textiles, but also links closely to the idea of stretchable electronics. In fact, linguistic features often mean that "stretchable" and "wearable" can even be used fairly interchangeably, particularly in Asian languages, further reinforcing the link between the two topics.
The result has been waves of new R&D investment around stretchable electronics, including the integration of electronics into clothing via conductive inks, exploration of new substrate options and materials to enable improved strain tolerance, and reviews of design approaches to enable stretchable electronics to be more easily integrated in a reliable and reproducible way. We have seen many players develop new material options, particularly around conductive inks and substrates, in order to address these needs. This also links onto many different component types that can be developed from these core materials, all enabling a full toolkit of stretchable electronic parts which designers can begin to integrate into products. The report explores both commercial options, as well as the leading edge of academic developments, particularly in more complicated component types such as ICs, batteries, energy harvesters, and more.
At the most fundamental level, development of stretchable electronic materials typically involves the development of conductive elements which can be printed onto different substrates. Where "stretchability" may be the original objective, optimization of the materials for the new substrate options offers potentially unforeseen advantages. These new substrate options may come with other advantageous properties which can give them an edge over competition in a variety of applications. For example, a new material such as silicone could have improved tactile qualities, enabling integration onto a surface used as a user interface. The new material could have improved compatibility with different surface treatment options or other steps within a manufacturing process. Finally, there have also been advantages where even something like the acoustic properties of a material are superior to that of the competitors; this was a specific example cited in the report involving use of stretchable inks for occupancy sensors in high end vehicles.
In fact, the area within the diverse area of stretchable electronics with the most commercial momentum is perhaps in mold electronics. A recent IDTechEx report published specifically on this topic found that this area is on the cusp of rapid growth, and predicted that the market for these devices will be worth over a billion dollars in the next decade. In mold systems undergo a thermoforming step from a 2D sheet into a 3D part. During this forming, the materials, be they structural, graphic or electronic, undergo a single strain event. Therefore, the whole in mold stack must be optimised to tolerate this stretchability and therefore principles of stretchable electronics must be implemented. The key markets for this technique at the moment are in the automotive and white goods spaces. However, we have already seen consumer electronics products, such as Suunto's Movesense device, which are already manufactured using in mold processes. The full story behind in mold electronics is told in the report, along with profiles and data from the leading players.
IDTechEx's report on Stretchable and Conformal Electronics provides a comprehensive review of this prominent trend in the electronics industry today. The information in the report has been collated over several years of research by IDTechEx's expert team of analysts. The majority of research has been conducted via primary interviews with key personnel from companies in the space, of which the report includes a listing of 87 companies and 25 academic players.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
LITEON Technology Reports Consolidated August Sales of NT$15.6 Billion, Up 13% M-o-M, 30% YoY
09/10/2025 | LITEON TechnologyLITEON Technology reported its August consolidated revenue of NT$15.6 billion. Thanks to the growth from power management in cloud computing, advanced server, and networking, the revenue is up 13% M-o-M, 30% Y-o-Y.
MacDermid Alpha Presents at SMTA New Delhi, Bangalore Chapter, on Flux–OSP Interaction
09/09/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha contributes technical insights on OSP solderability at the Bangalore Chapter, SMTA reinforcing commitment to knowledge-sharing and industry collaboration.
Elephantech Selected for NEDO’s Deep-Tech Startups Support Program in the Green Transformation field
09/09/2025 | ElephantechElephantech is pleased to announce its selection for the Demonstration development for Mass Production (DMP) phase of the 4th round of the Deep-Tech Startups Support Program in the Green Transformation field (GX) by NEDO, the New Energy and Industrial Technology Development Organization of Japan.
Ynvisible Celebrates Inauguration of New Production Facility in Norrköping, Sweden
09/09/2025 | Ynvisible Interactive Inc.Ynvisible Interactive Inc., a pioneer in sustainable and scalable e-paper display technology and printed electronics, is pleased to announce the successful inauguration of its new roll-to-roll production facility in Norrköping, Sweden – a city globally recognized as a center of excellence for Printed and Organic Electronics.
Sypris Wins Contract for Classified Missile Avionics Program
09/09/2025 | Sypris Solutions Inc.Sypris Electronics, LLC, a subsidiary of Sypris Solutions, Inc., announced that it has received a follow-on contract award to manufacture and test advanced electronic power supply modules for integration into the avionics suite of a classified, mission-critical missile program. Production is scheduled to begin in 2026.