Mobility Lab Helps Fight Motion Sickness in Self-Driving Cars
July 2, 2019 | Eindhoven University of TechnologyEstimated reading time: 3 minutes

Autonomous cars are safer to drive and offer passengers the opportunity to relax, sit back and enjoy while being transported to their destination. There is a drawback, though. Many people experience motion sickness when reading or watching a movie in a moving car.
Image Caption: The Vibrotactile Display with Active Movement Mechanism (VDAM) combines vibrations in the forearm and through moveable plates in the chair
Two Malaysian researchers at the faculty of Industrial Design of the Eindhoven University of Technology, Nidzamuddin Md. Yusof and Juffrizal Karjanto, have found ways to alleviate this problem by increasing the so-called passengers’ situational awareness. To test their solution they built a Mobility Lab, a special car outfitted with instruments that simulates an autonomous car. Md. Yusof and Karjanto will defend their dissertations on July 3th and 4th at the TU/e.
In a fully automated vehicle, human drivers become passengers. While the car handles all driving tasks and decisions, they have the freedom to engage in work, socializing or leisure activities. However, once involved in non-driving tasks, people tend to become unaware of the intentions of the vehicle. As a result, they are unprepared for the forces generated from acceleration, braking or turning. For many people this leads to motion sickness, a serious problem that may hamper the further development of self-driving cars.
This may be solved by letting autonomous cars drive in a more defensive manner, avoiding abrupt changes in direction or speed. However, in an urban environment with many junctions and corners, this is not a solution.
Mobility Lab
To provide a better alternative, the two researchers developed four non-intrusive devices that inform the passenger about his whereabouts without the need to look outside. Two devices provided peripheral information through a visual display, the other two through haptic feedback. They tested their devices in a specially outfitted car, the Mobility Lab, that simulates an automated car in real life. This provided them with much more relevant results than traditional simulators.
Peripheral visual feedforward system (PVFS): (left) Positioning inside the Mobility Lab; (right) Light moving from bottom to top on the right side to indicate that the fully automated vehicle is about to turn to the right.
The devices were tested on around 20 passengers each, with every participant undergoing three separate one-hour sessions where they had to either watch a movie or read a book on a tablet. The results show that all four systems increased the situation awareness of the participants. Two devices also managed to reduce symptoms of motion sickness: the Peripheral Visual Feedforward System (PVFS) (for participants who watched a movie), and the Vibrotactile Display with Active Movement Mechanism (VDAM) (for participants who read a book on a tablet).
The PVFS consists of two rows of 32 LED lights left and right of the movie screen, that inform the passenger in an unobtrusive way of the intended turn of the car. The VDAM conveys information about the car’s intentions by vibrations in the forearm and through moveable plates in the chair.
Future Design
The researchers hope their work contributes to the design of future interfaces inside the interiors of automated vehicles. “We mainly focused on the vehicle’s technology and its impact on motion sickness, but the development of a sustainable product should also take into account the passengers’ comfort and experience. This requires the input from different educational and experience backgrounds.”
The Mobility Lab will remain at the Department of Industrial Design in the TU/e, and will be used for further research into the design of self-driving cars. In addition, an identical version of the Mobility Lab will be developed at the Universiti Teknikal Malaysia Melaka, with collaboration from TU/e, focusing on Asian users.
Suggested Items
Molex Releases New Report on Strategies for Advancing Rugged, Reliable Connectivity in Modern Aerospace and Defense Applications
04/01/2025 | MolexMolex, a global electronics leader and connectivity innovator, has released a new report from AirBorn, a Molex company, which explores the unrelenting demands for constant, continuous connectivity to support the rigors of modern aerospace, defense and space-industry applications.
Electronic Design Automation Market to Reach $17.47 Billion by 2030, Growing at a CAGR of 10.7%
03/31/2025 | PRNewswireThe growth of the EDA market is driven by the increasing complexity of integrated circuit (IC) designs, rising adoption of connected devices, and growing demand for EDA solutions in the aerospace and defense sectors. Additionally, the increasing integration of AI and machine learning in chip design is further boosting market expansion.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
03/28/2025 | Andy Shaughnessy, I-Connect007I’ve spent my week recovering from a busy and interesting week in Anaheim for the 25th IPC APEX EXPO. I think back to my first APEX EXPO, and the changes since then are too numerous to count. I first attended in 2004, also in Anaheim, back when there was almost no design content in the conference or expo portions of the show. It was just a few years after the downturn, and attendees and exhibitors alike were skittish, almost afraid to show confidence in our industry. A few unemployed design friends handed out copies of their resumes. Travel budgets were still down, and the aisles weren’t exactly packed with traffic.
It’s Only Common Sense: 7 Tips to Focus on What Works
03/31/2025 | Dan Beaulieu -- Column: It's Only Common SenseIn business, there’s always the temptation to be all things to all people, whether it’s expanding product lines, chasing every lead, or trying to keep up with competitors. The fear of missing out can lead to spreading our time, resources, and energy too thin. However, success doesn’t come from doing everything; it comes from doing the right things well.
HARTING 3D-Circuits Leads 3D-MID Innovation: Transforming Consumer Electronics with Advanced Technology
03/27/2025 | PRNewswireThe consumer electronics industry is experiencing a remarkable transformation, propelled by rapid technological advancements and an increasing demand for compact, efficient, and multifunctional devices. Central to this evolution is 3D-MID (Three-Dimensional Mechatronic Integrated Devices) technology, which redefines design standards and drives innovation.