-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
NUS Innovation Boosts Wireless Connectivity 1,000 Times
July 17, 2019 | NUSEstimated reading time: 4 minutes

Over the past decade, a major trend in electronics has been the development of sensors, displays and smart devices which are seamlessly integrated onto the human body. Most of these wearable devices are singularly connected to a user’s smart phone and transmit all data via bluetooth or wi-fi signals. But as consumers wear increasing numbers of wearable devices, and as the data they transmit increases in sophistication, more innovative connection methods are being sought after.
Now, NUS researchers have invented a completely new way for wearable devices to interconnect. They incorporated conductive textiles into clothing to dynamically connect several wearable devices at once. This ‘wireless body sensor network’ allows devices to transmit data with 1,000 times stronger signal than conventional technologies, meaning the battery life of all devices is dramatically improved. Wireless networks of these wearable devices on a body have future applications in health monitoring, medical interventions and human–machine interfaces.
This technological breakthrough, which took the 10-member team a year to achieve, was published as the cover of Nature Electronics on 17 June 2019.
Better Data Transmission, Greater Privacy
Currently, almost all body sensors like smart watches connect to smartphones and other wearable electronics via radio-waves like Bluetooth and Wi-Fi. These waves radiate outwards in all directions, meaning that most of the energy is lost to the surrounding area. This method of connectivity drastically reduces the efficiency of the wearable technology as most of its battery life is consumed in attempting the connection.
As such, Assistant Professor John Ho and his team from the Institute for Health Innovation & Technology (NUS iHealthtech) and NUS Engineering wanted to confine the signals between the sensors closer to the body to improve efficiency.
Their solution was to enhance regular clothing with conductive textiles known as metamaterials. Rather than sending waves into surrounding space, these metamaterials are able to create ‘surface waves’ which can glide wirelessly around the body on the clothes. This means that the energy of the signal between devices is held close to the body rather than spread in all directions. Hence, the wearable electronics use much less power than normal, and the devices can detect much weaker signals.
“This innovation allows for the perfect transmission of data between devices at power levels that are 1,000 times reduced. Or, alternatively, these metamaterial textiles could boost the received signal by 1,000 times which could give you dramatically higher data rates for the same power,” Asst Prof Ho stated. In fact, the signal between devices is so strong that it is possible to wirelessly transmit power from a smartphone to the device itself — opening the door for battery-free wearable devices.
Crucially, this signal boost does not require any changes to either the smartphone or the Bluetooth device — the metamaterial works with any existing wireless device in the designed frequency band.
This inventive way of networking devices also provides more privacy than conventional methods. Currently, radio-waves transmit signals several metres outwards from the person wearing the device, meaning that personal and sensitive information could be vulnerable to potential eavesdroppers. By confining the wireless communication signal to within 10 centimetres of the body, Asst Prof Ho and his team have created a network which is more secure.
Page 1 of 2
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Macronix Introduces Cutting-Edge Secure-Boot NOR Flash Memory
08/08/2025 | PRNewswireMacronix International Co., Ltd., a leading integrated device manufacturer in the non-volatile memory (NVM) market, announced ArmorBoot MX76, a robust NOR flash memory combining in a single device, the essential performance and an array of security features that deliver rapid boot times and iron-clad data protection.
Inside the AI Hardware Boom: Servers, Substrates and Advanced Packaging
08/07/2025 | Edy Yu, Printed Circuit Information, China, and Marcy LaRont, I-Connect007AI is rewriting the hardware playbook, marrying complex software and algorithms to run and improve machine and equipment operations. Sorting through, managing, and utilizing massive amounts of data takes tremendous data storage and processing power. Enter the new generation of supercomputers and data servers. The data servers being built today are not your momma’s server, as they say.
AI Is the Golden Track Reviving Electronics and PCBs
08/06/2025 | Edy Yu, Chief Editor, ECIO, and the I-Connect007 Editorial TeamRemember 2021? Despite COVID, the electronics industry hit a high. Then came the slide. By 2023, the industry was deep in the red. With inflation, policy shifts, and exchange rate shocks, the problems were long, and the outlook was bleak. Recovery finally appeared in 2024, but it was fragile. Automotive electronics slumped, wireless demand stayed soft, and the ride up was anything but smooth. Yet, amid the uncertainty, one bright track emerged: artificial intelligence (AI).
Brent Laufenberg Appointed CIO of the Global Electronics Association, Advancing Technology and Member Services
07/31/2025 | Global Electronics AssociationThe Global Electronics Association (formerly IPC International Inc.) announces the appointment of Brent Laufenberg as its new Chief Information Officer (CIO).
SES AI Accelerates Timeline for Revenue Growth and Profitability with Acquisition of UZ Energy
07/31/2025 | BUSINESS WIRESES AI Corporation, a global leader in the development and manufacturing of AI-enhanced high-performance Li-Metal and Li-ion batteries, today announced it has executed a definitive agreement to acquire 100% of UZ Energy, an energy storage systems (“ESS”) provider, for a purchase price of approximately $25.5 million, subject to earnout adjustment based on the achievement of specified financial targets.