First Programmable Memristor Computer Aims to Bring AI Processing Down from the Cloud
July 18, 2019 | Michigan State UniversityEstimated reading time: 4 minutes
To build the first programmable memristor computer, Lu’s team worked with associate professor Zhengya Zhang and professor Michael Flynn, both of electrical and computer engineering at U-M, to design a chip that could integrate the memristor array with all the other elements needed to program and run it. Those components included a conventional digital processor and communication channels, as well as digital/analog converters to serve as interpreters between the analog memristor array and the rest of the computer.
Lu’s team then integrated the memristor array directly on the chip at U-M’s Lurie Nanofabrication Facility. They also developed software to map machine learning algorithms onto the matrix-like structure of the memristor array.
The team demonstrated the device with three bread-and-butter machine learning algorithms:
- Perceptron, which is used to classify information. They were able to identify imperfect Greek letters with 100% accuracy
- Sparse coding, which compresses and categorizes data, particularly images. The computer was able to find the most efficient way to reconstruct images in a set and identified patterns with 100% accuracy
- Two-layer neural network, designed to find patterns in complex data. This two-layer network found commonalities and differentiating factors in breast cancer screening data and then classified each case as malignant or benign with 94.6% accuracy.
There are challenges in scaling up for commercial use—memristors can’t yet be made as identical as they need to be and the information stored in the array isn’t entirely reliable because it runs on analog’s continuum rather than the digital either/or. These are future directions of Lu’s group.
Lu plans to commercialize this technology. The study is titled, “A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations.” The research is funded by the Defense Advanced Research Projects Agency, the center for Applications Driving Architectures (ADA), and the National Science Foundation.
Page 2 of 2Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Soaring Inference AI Demand Triggers Severe Nearline HDD Shortages; QLC SSD Shipments Poised for Breakout in 2026
09/16/2025 | TrendForceTrendForce’s latest investigations reveal that the massive data volumes generated by AI are straining the global infrastructure of data center storage.
Advanced Packaging-to-Board-Level Integration: Needs and Challenges
09/15/2025 | Devan Iyer and Matt Kelly, Global Electronics AssociationHPC data center markets now demand components with the highest processing and communication rates (low latencies and high bandwidth, often both simultaneously) and highest capacities with extreme requirements for advanced packaging solutions at both the component level and system level. Insatiable demands have been projected for heterogeneous compute, memory, storage, and data communications. Interconnect has become one of the most important pillars of compute for these systems.
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.