Single-Electrode Material Streamlines Functions Into a Tiny Chip
July 29, 2019 | KAUSTEstimated reading time: 1 minute

The ability to combine many functions into a single microchip is a significant advance in the quest to perfect the tiny, self-powered sensors that will expand the Internet of things. KAUST researchers have managed to combine sensing, energy-harvesting, current-rectifying and energy-storage functions into a single microchip.
"Previously, researchers had to use bulky rectifiers that converted intermittent harvested electrical energy into steady direct current for storage in electrochemical microsupercapacitors," says Mrinal K. Hota, research scientist at KAUST and lead author of the study.
Hota explains that the key to integrating everything into a single chip was the development of ruthenium oxide (RuO2) as the common electrode material connecting all devices in the microcircuits. The team envisages a broad range of applications from monitoring personal health indications directly from the human body to environmental and industrial sensing.
"Our achievement simplifies device fabrication and realizes significant miniaturization of self-powered sensor devices," says project leader Husam Alshareef.
The ruthenium-oxide contacts are laid onto a glass or silicon substrate to connect sensing, energy-harvesting and current-rectifying electronics with one or more electrochemical microsupercapacitors that store the electrical energy. This creates a tiny system that can operate without any battery power. Instead it uses available body movement or machinery vibrations as the reliable and continual source of energy.
"Unlike a battery, electrochemical microsupercapacitors can last for hundreds of thousands of cycles rather than just a few thousand," Hota points out. They can also deliver a significantly higher power output from a given volume.
A key to creating electrode material suitable for connecting all devices was to make optimal ruthenium-dioxide surfaces with controlled roughness, defects and conductivity. These features enabled the team to use RuO2 for both electronics and electrochemical microsupercapacitors.
Another crucial innovation was to use a gel that, after application, solidifies into the supercapacitors' electrolyte. This is a material that transports electric charge in the form of ions. The solidified gel was chosen to avoid any damage to rectifiers and thin-film transistors.
The researchers now plan to work to optimize the RuO2 electrodes further and explore linking many different types of sensors into their chips. They also want to investigate adding wireless communication into the device. This would allow biosensors and environmental sensors to send data remotely to any wireless receivers, including mobile phones and personal computers.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
SemiQon's Cryogenic Chip Technology for Quantum Computing and Space Applications Receives Award from EARTO
10/17/2025 | PRNewswireEARTO, the organisation of the European Research and Technology Organisations, awarded SemiQon and VTT first prize in the "Impact Expected" category on 14 October 2025 in Brussels for a pioneering cryogenic CMOS (complementary metal-oxide semiconductor) chip innovation.
Optimum Energy Powers Up Partnership with Conference USA
10/17/2025 | BUSINESS WIREOptimum Energy, a leading energy as a service provider for higher education, announced it will serve as a premier corporate sponsor for Conference USA (CUSA).
SemiQon's Cryogenic Chip Technology for Quantum Computing and Space Applications Receives Award from EARTO
10/16/2025 | PRNewswireEARTO, the organisation of the European Research and Technology Organisations, awarded SemiQon and VTT first prize in the "Impact Expected" category on 14 October 2025 in Brussels for a pioneering cryogenic CMOS (complementary metal-oxide semiconductor) chip innovation.
The MAPT Roadmap - A Plan to Revitalize the Semiconductor Industry for Decades to Come
10/15/2025 | BUSINESS WIRESemiconductor Research Corporation (SRC) is pleased to unveil the Microelectronics and Advanced Packaging (MAPT) Roadmap, crafted through the collective effort of approximately 300 individuals representing 112 organizations from industry, academia, and government.
Renesas Powers 800 Volt Direct Current AI Data Center Architecture with Next-Generation Power Semiconductors
10/13/2025 | RenesasRenesas Electronics Corporation, a premier supplier of advanced semiconductor solutions, announced that it is supporting efficient power conversion and distribution for the 800 Volt Direct Current power architecture announced by NVIDIA, helping fuel the next wave of smarter, faster AI infrastructure.