Leap Toward Robust Binder-Less Metal Phosphide Electrodes for Li-Ion Batteries
July 31, 2019 | Toyohashi University of Technology (TUT)Estimated reading time: 3 minutes
Researchers at the Toyohashi University of Technology have successfully fabricated a binder-less tin phosphide (Sn4P3)/carbon (C) composite film electrode for lithium-ion batteries via aerosol deposition. The Sn4P3/C particles were directly solidified on a metal substrate via impact consolidation, without applying a binder. Charging and discharging cycling stabilities were improved by both complexed carbon and controlled electrical potential window for lithium extraction. This finding could help realize advanced lithium-ion batteries of higher capacity.
Scanning electron microscope (SEM) images of Sn4P3/C composite particles (1st row:1st image), and surface of Sn4P3/C composite film fabricated by the AD process (1st row:3rd image). Corresponding elementary distributions for Sn, P, and C are also shown.
Lithium-ion (Li-ion) batteries are widely used as a power source in portable electronic devices. They have recently attracted considerable attention because of their potential to be employed in large-scale as a power source for electric vehicles and plugin hybrid electric vehicles and as stationary energy storage systems for renewable energy. To realize advanced Li-ion batteries with higher energy density, anode materials with higher capacity are required. Although a few Li alloys such as Li-Si and Li-Sn, whose theoretical capacity is much higher than that of graphite (theoretical gravimetric capacity = 372 mAh/g), have been extensively studied, they generally result in poor cycling stability due to the large variation in volume during charging and discharging reactions.
Tin phosphide (Sn4P3) (theoretical gravimetric capacity = 1255 mAh/g) with layered structure, generally used as a high-capacity alloy-based anode material for Li-ion batteries, has an averaged operation potential of ?0.5 V vs. Li/Li+. Reports indicate that complexing carbon materials with nano-structured Sn4P3 particles significantly enhance the cycling stability. Generally, electrodes used in batteries are fabricated by coating a slurry comprising electrode active materials, conductive carbon additives, and binders on metallic foils. For carbon complexed Sn4P3 (Sn4P3/C) anodes (such as those reported in the literature), the weight fraction of the active materials in an electrode is decreased by approximately 60?70 % because of the use of significant quantities of conductive additives and binders to achieve stable cycling. Consequently, the gravimetric specific capacity per electrode weight (including those of conductive carbon additives and binders) is decreased significantly.
Researchers at the Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, have successfully fabricated a binder-less Sn4P3/C composite film electrode for Li-ion battery anodes via aerosol deposition (AD). In this process, the Sn4P3 particles are complexed with acetylene black using simple ball-milling method; the obtained Sn4P3/C particles are then directly solidified on a metal substrate via impact consolidation without adding any other conductive additives or binders. This method enables enhancement of the fraction of Sn4P3 in the composite to above 80%. Furthermore, structural change of the composite electrode is reduced and cycling stability is improved for both complexed carbon and controlled electrical potential window for lithium extraction reaction. The Sn4P3/C composite film fabricated by the AD process maintains gravimetric capacities of approximately 730 mAh g-1, 500 mAh g-1, and 400 mAh g-1 at 100th, 200th, and 400th cycles, respectively.
The first author Toki Moritaka is quoted as saying, "Although optimizing the deposition conditions was difficult, useful information on enhancement of cycling stability of the Sn4P3/C composite film electrode fabricated by the AD process was obtained. The complexed carbon functions not only as a buffer to suppress the collapse of electrodes caused by the large variation in volume of Sn4P3, but also as an electronic conduction path among the atomized active material particles in the composite."
"This process is an effective means to increase the capacity value per electrode weight. We believe there is scope for improvement of the electrochemical performance by the size and content of the carbon in Sn4P3/C used in composite film fabrication by the AD process. We are now trying to optimize the complexed carbon content and increase the composite film thickness," quotes Associate Professor Ryoji Inada.
The findings of this study may contribute to the realization of advanced Li-ion batteries of higher capacity. Moreover, because not only Li but Na can also be stored in and extracted from Sn4P3 by similar alloying and dealloying reactions, the Sn4P3 electrode can be employed in next-generation Na-ion batteries at much lower costs.
Suggested Items
Dongguk University Researchers Advance Lithium-Ion Battery Technology with Hybrid Anode Material
04/14/2025 | PRNewswireResearchers from Dongguk University have achieved a significant breakthrough in lithium-ion battery technology by developing a novel hybrid anode material.
Ecobat Accelerates Battery Recycling with Three Fully Operational Lithium Recycling Plants in 12 Months
04/04/2025 | PRNewswireEcobat, a global leader in battery recycling, announced the successful commissioning of three cutting-edge lithium-ion battery recycling facilities within just one year. Located in Hettstedt, Germany;
EV Solid-State Battery Validation Accelerates in the U.S. and Europe, Mass Production Expected to Gradually Begin by 2026
03/13/2025 | TrendForceTrendForce’s latest research reveals that solid-state batteries are emerging as the next-generation battery technology with high commercial potential. Manufacturers across the U.S., Europe, and other global markets are accelerating large-scale production development and performance validation for automotive applications.
Semi-Solid State Battery Adoption in EVs Gradually Rises, Projected to Exceed 1% Market Penetration by 2027
02/04/2025 | TrendForceTrendForce’s latest research highlights that semi-solid state batteries—an emerging battery technology combining the advantages of traditional liquid electrolyte batteries and solid-state batteries—entered trial production before 2020.
Coherent Evaluates Strategic Alternatives for Its Advanced Lithium-Ion Battery Recycling Technology
12/13/2024 | Globe NewswireCoherent Corp., a global leader in materials, networking, and lasers, today announced that as a result of an ongoing strategic portfolio assessment, the company will evaluate strategic alternatives for its Streamlined Hydrometallurgical Advanced Recycling Process (SHARP™) technology to efficiently recover and recycle critical metals from lithium-ion batteries (LiBs).