Quantum Interferometry Demonstrated in Silicon at More Practical Temperatures
August 6, 2019 | RIKENEstimated reading time: 2 minutes

Using a silicon-based transistor similar to those found in everyday electronics, RIKEN researchers have produced a functional quantum ‘qubit’—the quantum equivalent of bits used in conventional computers—that operates above the extremely low temperatures typically needed to observe quantum interference effects.
Image Caption: Figure 1: By fabricating a simple three-terminal device that is similar to a general transistor using standard microfabrication techniques, RIKEN researchers could observe quantum interference effects of a single qubit while continuously varying the energy level of the qubit (inset).
The study breaks open the exploration of quantum interference to enable research using standard materials and techniques at more accessible temperatures.
Many highly sensitive measurement techniques are based on monitoring the interference of waves. The most well-known example is the detection of extremely weak gravitational waves generated by colliding neutron stars and black holes using the interference between two laser beams that are several kilometers long. Many scientists are working on extending this technique to the wave functions of quantum objects since this would permit much more sensitive sensing than is possible using classical waves.
A promising system for achieving such quantum interferometry is silicon because researchers can draw on the many decades of research and development that have gone into conventional silicon-based electronics and integrated circuits. In particular, spin qubits in silicon could be used for quantum interferometry, but semiconductor qubits typically need temperatures very close to absolute zero, which necessitates using bulky and expensive cryogenic equipment.
Now, Keiji Ono of the RIKEN Advanced Device Laboratory and his co-workers have raised the operating temperature of qubits in silicon to 1.6 kelvin. “This is in the ‘high temperature’ range, which might sound strange, but compared with the 0.1 kelvin temperatures usually required for semiconductor qubits, these high temperatures can be produced in a less expensive, smaller facility and in a short time,” comments Ono. “This is a major achievement and will reduce the hurdles for any research group trying to enter this area of research and development.”
The researchers fabricated a simple three-terminal device similar to a general transistor using standard microfabrication techniques, and were able to observe the quantum interference effects of the single qubit while continuously varying the energy level of the qubit (inset of Fig. 1).
“I wanted to use a silicon device as a universal basis for exploring ubiquitous, material-independent quantum effects,” explains Ono. “Furthermore, our device is not just a laboratory device made using silicon material, but a practical device that actually forms part of a large-scale integrated circuit.”
The results that the team obtained using the device agreed well with theory. “Our single qubit calculates the weighted average of two input variables using quantum interference,” says Ono. “We achieved almost perfect agreement between the experiments and calculations, confirming the ubiquitous nature of the observed quantum interference effect.”
Suggested Items
IDC: Global Wrist-Worn Device Shipments Grew 10.5% in Q1 2025
06/25/2025 | IDCAccording to the latest data from the Worldwide Quarterly Wearable Device Tracker, released by International Data Corporation (IDC), the global wrist-worn device market shipped 45.6 million units in the first quarter of 2025, a year-on-year (YoY) increase of 10.5%.
Global Dry Film Photoresist Market Set for Robust Growth with Expanding Semiconductor Ecosystem
06/24/2025 | PRNewswireIn 2024, the global market size of Dry Film Photoresist was estimated to be worth US$939 million and is forecast to reach approximately US$1191 million by 2031 with a CAGR of 3.5% during the forecast period 2025-2031.
Zero Defects International Partner, Epoch International, Announces Sale on Precision Control Systems
06/21/2025 | Zero Defects InternationalZero Defects International partner, EPOCH INTERNATIONAL, has announced significantly reduced overstock pricing for a large quantity of precision industrial motor, actuator, and sensor control systems.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.
Keysight, NTT, and NTT Innovative Devices Achieve 280 Gbps World Record Data Rate with Sub-Terahertz for 6G
06/17/2025 | Keysight TechnologiesKeysight Technologies, Inc. in collaboration with NTT Corporation and NTT Innovative Devices Corporation (NTT Innovative Devices), today announced a groundbreaking world record in data rate achieved using sub-THz frequencies.