Quantum Interferometry Demonstrated in Silicon at More Practical Temperatures
August 6, 2019 | RIKENEstimated reading time: 2 minutes

Using a silicon-based transistor similar to those found in everyday electronics, RIKEN researchers have produced a functional quantum ‘qubit’—the quantum equivalent of bits used in conventional computers—that operates above the extremely low temperatures typically needed to observe quantum interference effects.
Image Caption: Figure 1: By fabricating a simple three-terminal device that is similar to a general transistor using standard microfabrication techniques, RIKEN researchers could observe quantum interference effects of a single qubit while continuously varying the energy level of the qubit (inset).
The study breaks open the exploration of quantum interference to enable research using standard materials and techniques at more accessible temperatures.
Many highly sensitive measurement techniques are based on monitoring the interference of waves. The most well-known example is the detection of extremely weak gravitational waves generated by colliding neutron stars and black holes using the interference between two laser beams that are several kilometers long. Many scientists are working on extending this technique to the wave functions of quantum objects since this would permit much more sensitive sensing than is possible using classical waves.
A promising system for achieving such quantum interferometry is silicon because researchers can draw on the many decades of research and development that have gone into conventional silicon-based electronics and integrated circuits. In particular, spin qubits in silicon could be used for quantum interferometry, but semiconductor qubits typically need temperatures very close to absolute zero, which necessitates using bulky and expensive cryogenic equipment.
Now, Keiji Ono of the RIKEN Advanced Device Laboratory and his co-workers have raised the operating temperature of qubits in silicon to 1.6 kelvin. “This is in the ‘high temperature’ range, which might sound strange, but compared with the 0.1 kelvin temperatures usually required for semiconductor qubits, these high temperatures can be produced in a less expensive, smaller facility and in a short time,” comments Ono. “This is a major achievement and will reduce the hurdles for any research group trying to enter this area of research and development.”
The researchers fabricated a simple three-terminal device similar to a general transistor using standard microfabrication techniques, and were able to observe the quantum interference effects of the single qubit while continuously varying the energy level of the qubit (inset of Fig. 1).
“I wanted to use a silicon device as a universal basis for exploring ubiquitous, material-independent quantum effects,” explains Ono. “Furthermore, our device is not just a laboratory device made using silicon material, but a practical device that actually forms part of a large-scale integrated circuit.”
The results that the team obtained using the device agreed well with theory. “Our single qubit calculates the weighted average of two input variables using quantum interference,” says Ono. “We achieved almost perfect agreement between the experiments and calculations, confirming the ubiquitous nature of the observed quantum interference effect.”
Suggested Items
Murata Manufacturing Vietnam Expands Ho Chi Minh Plant with New Production Building
05/08/2025 | MurataMurata Manufacturing Vietnam Co., Ltd. (Ho Chi Minh, Vietnam), a manufacturing subsidiary of Murata Manufacturing Co., Ltd., will begin construction on a new production building at its Ho Chi Minh plant in May 2025.
StratEdge LPA-Series Semiconductor Packages Take Center Stage at CS Mantech and Space Tech Expo USA
05/07/2025 | StratEdgeStratEdge Corporation will display its thermally efficient Leaded Power Amplifier (LPA) packages in Booth 805 at CS Mantech.
Fresh PCB Concepts: Key Considerations for Reliability, Performance, and Compliance in PCBs
05/01/2025 | Team NCAB -- Column: Fresh PCB ConceptsAs a field application engineer with many years of experience, I’ve conducted thousands of designs for manufacturing (DFM) analyses on printed circuit boards (PCBs). From basic one-layer boards to complex high density interconnect (HDI) designs, I’ve provided technical advice across a wide spectrum of technologies.
Incap India Invests in Youth Development and Community leadership
04/24/2025 | IncapIncap India has contributed 2.5 million (approximately EUR 27,000) to the Swami Vivekananda Cultural Youth Centre in Mysore as part of its Sustainability Programme.
PTCRB Certification Adds New IoT Chipset Certification Category, Certifies Sony's Altair ALT1350 CTIA Certification
04/23/2025 | PRNewswireCTIA Certification announced the first PTCRB certified IoT chipset, Sony's Altair ALT1350.