Striped Glow Sticks
August 8, 2019 | WileyEstimated reading time: 1 minute
It may be possible to reach new levels of miniaturization, speed, and data processing with optical quantum computers, which use light to carry information. For this, we need materials that can absorb and transmit photons.
Chinese scientists have introduced a new strategy for constructing photonic heterostructure crystals with tunable properties. Using a crystalline rod with stripes that fluoresce in different colors, they have developed a prototype of a logic gate.
The team led by Ze Chang and Xian-He Bu achieved success by using specially constructed metal–organic frameworks (MOFs)—lattice-like structures made of metallic “nodes” bridged by organic ligands. These structures contain cage-like cavities that can hold other molecules as “guests”.
In this case, the guests and a part of the ligands integrated into the lattice are matched so that the guests can transfer electrons to the ligand molecule (charge transfer). Such systems tend to fluoresce. The color of the fluorescence for a given MOF depends on the type of guest.
A further advantage of MOF structures is that their crystallization occurs through the growth of layers onto a crystallization nucleus in one preferred direction. The researchers from Nankai University, Tianjin, the Collaborative Innovation Center of Chemical Science and Engineering, Tianjin and Institute of Chemistry Chinese Academy of Sciences, Beijing (China) were thus able to produce rod-shaped crystals. During the crystallization, they varied the types of guest molecule incorporated.
This resulted in “striped” rods with separate domains that fluoresce differently. For example, they produced rods whose ends absorb UV light and fluoresce blue-green, while the center absorbs visible green light and emits red light. Because they are in direct contact, energy can be transferred between the domains, and some of the blue-green photons can be transmitted to the center portion, thereby causing it to fluoresce red.
Most importantly, these rods behave as light conductors, meaning that no matter which spot is irradiated, part of the fluorescence light is transported through the entire rod to its ends.
Based on this type of crystal, the researchers developed a prototype for a logic circuit with two “entrances” and two “exits”; that is, locations where light can be stored or registered and red and/or blue-green signals generated, respectively. The researchers envision potential applications for their MOF crystals in components with integrated optical circuits, such as photonic diodes, on-chip signal processors, and optical logic gates.
Suggested Items
Vertical Aerospace, Honeywell Expand Partnership to Bring VX4 eVTOL to Market
05/13/2025 | HoneywellVertical Aerospace and Honeywell announced the signing of a new long-term agreement that expands their existing partnership and reinforces Honeywell’s commitment to the certification and production of Vertical’s electric vertical take-off and landing (eVTOL) aircraft, the VX4.
Northrop Grumman’s IVEWS Completes F-16 Electronic Warfare Operational Assessment
05/05/2025 | Northrop GrummanNorthrop Grumman Corporation’s IVEWS (Integrated Viper Electronic Warfare Suite) has successfully completed Operational Assessment flight testing on U.S. Air Force F-16 aircraft, demonstrating its effectiveness against advanced radar-guided threats.
Panasonic Avionics Completes Multi-Orbit Network Optimization Following Seamless Leo / Geo Switching in Flight
04/28/2025 | Panasonic AvionicsPanasonic Avionics Corporation (Panasonic Avionics), a leading provider of in-flight entertainment and connectivity (IFEC) solutions, has announced the successful optimization of its multi-orbit satellite network following switching between LEO and GEO networks in its flight test program.
QD-OLED to Account for 73% of OLED Monitor Shipments in 2025, Driven by Advancing Technology and New Products
04/16/2025 | TrendForceTrendForce’s latest investigations reveal that ongoing advancements in OLED displays are propelling the growth of QD-OLED monitor shipments. QD-OLED’s share of OLED monitor shipments is expected to rise from 68% in 2024 to 73% in 2025, highlighting its strong competitiveness in the high-end monitor market.
TDK Demonstrates the World's First ‘Spin Photo Detector’ Capable of 10X Data Transmission Speeds for the Next Generation of AI
04/16/2025 | PRNewswireThis new device is expected to be a key driver for implementing photoelectric conversion technology that boosts data transmission and data processing speed, particularly in AI applications, while simultaneously reducing power consumption.