Researchers Turn off Backscattering, Aim to Improve Optical Data Transmission
August 14, 2019 | University of IllinoisEstimated reading time: 3 minutes

Engineers at the University of Illinois have found a way to redirect misfit light waves to reduce energy loss during optical data transmission. In a study, researchers exploited an interaction between light and sound waves to suppress the scattering of light from material defects—which could lead to improved fiber optic communication. Their findings are published in the journal Optica.
Light waves scatter when they encounter obstacles, be it a crack in a window or a tiny flaw in a fiber optic cable. Much of that light scatters out of the system, but some of it scatters back toward the source in a phenomenon called backscattering, the researchers said.
“There is no such thing as a perfect material,” said mechanical science and engineering professor Gaurav Bahl, who led the study. “There is always a little bit of imperfection and a little bit of randomness in the materials that we use in any engineered technology. For instance, the most perfect optical fiber used for long-range data transmission might still have some invisible flaws. These flaws can be a result of manufacturing, or they can appear over time as a result of thermal and mechanical changes to the material. Ultimately, such flaws set the limits of performance for any optical system.”
A few previous studies have shown that undesirable backscattering can be suppressed in special materials that have certain magnetic properties. However, these are not viable options for today’s optical systems that use transparent, nonmagnetic materials like silicon or silica glass, Bahl said
In the new study, Bahl and graduate student Seunghwi Kim used an interaction of light with sound waves, instead of magnetic fields, to control backscattering.
Light waves travel through most materials at the same speed irrespective of direction, be it forward or backward, Bahl said. “But, by using some direction-sensitive opto-mechanical interactions, we can break that symmetry and effectively shut down backscattering. It is like creating a one-way mirror. By blocking the backward propagation of a light wave, it has nowhere to go when it encounters a scatterer, and no other option than to continue moving forward.”
To demonstrate this phenomenon, the team sent light waves into a tiny sphere made of silica glass, called a microresonator. Inside, the light travels along a circular path like a racetrack, encountering defects in the silica over and over again, amplifying the backscattering effect. The team then used a second laser beam to engage the light-sound interaction in the backward direction only, blocking the possibility of light scattering backward. What would have been lost energy continues moving forward, in spite of defects in the resonator.
Being able to stop the backscattering is significant, but some of the light is still lost to side scattering, which scientists have no control over, Bahl said. “The advance is therefore very subtle at this stage and only useful over a narrow bandwidth. However, simply verifying that we can suppress backscattering in a material as common as silica glass suggests that we could produce better fiber optical cable or even continue to use old, damaged cable already in service at the bottom of the world’s oceans, instead of having to replace it.”
Trying the experiment in fiber optic cable will be the next step in showing that this phenomenon is possible at the bandwidths required in optical fiber communications.
“The principle that we explored has been seen before,” Bahl said. “The real story here is that we have confirmed that backscattering can be suppressed in something as simple as glass, using an opto-mechanical interaction that is available in every optical material. We hope that other researchers examine this phenomenon in their optical systems, as well, to further advance the technology.”
The National Science Foundation, Air Force Office of Scientific Research and the Office of Naval Research supported this study.
Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.