When Human Expertise Improves the Work of Machines
August 30, 2019 | Georgia TechEstimated reading time: 5 minutes
Using a conductive tip on an atomic force microscope, they examined the electromechanical response from a series of chemically related samples, generating as many as 2,500 time- and voltage-dependent measurements on a grid of points established on each sample. The process generated hundreds of thousands of data points and provided a good test for the stacking approach, known technically as concatenation.
“Instead of just looking at the chemical composition that provides the highest response, we looked at a range of compositions and tried to figure out the commonality,” she said. “We figured out that if we applied this data stacking with some thought process behind it, we could learn more about these interesting materials.”
Among their findings: Though the material is a single crystal, the functional response showed highly disordered behavior, reminiscent of a fully disordered material like glass. “This glassy behavior really is unexpectedly persisting beyond a small percentage of the material compositions,” said Bassiri-Gharb. “It is persisting across all of the compositions that we have looked at.”
She hopes the technique will ultimately lead to information that will improve many materials and their functionalities. Knowing which chemicals need to be included could allow the materials scientists to move to the next phase — working with chemists to put the right atoms in the right places.
“The big goal for any materials’ functionality is to find the guidelines that will provide the properties we want,” she said. “We want to find the straight path to the best compositions for the next generation of these materials.”
This research was supported by the National Science Foundation (NSF) through award DMR-1255379, by the Defense Threat Reduction Agency (DTRA) though grant HDTRA1-15-0035, by the Center for the Science and Technology of Advanced Materials and Interfaces (STAMI) at Georgia Tech, and Division II of the Swiss National Science Foundation under project 200021_178782. The piezo-response measurements were in part performed at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, which is a U.S. Department of Energy Office of Science User Facility. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsoring organizations.
Page 2 of 2Suggested Items
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.
Real Time with... IPC APEX EXPO 2025: DuPont Electronics Materials and Innovations
04/23/2025 | Real Time with...IPC APEX EXPODuPont is many things to many markets, but DuPont Electronics Materials is, perhaps, a bit out of the DuPont "norm," developing specialized electronic materials that are particularly focused on challenging areas such as flex circuits, high power PCBs and products that must withstand harsh environments. At IPC APEX EXPO, Marcy LaRont sat down with Shannon Dugan from DuPont Electronics Materials to discuss some big news. They are being spun off into an independent entity with a new CEO having just been announced as the show wrapped.
Material Selection and RF Design
04/21/2025 | Andy Shaughnessy, Design007 MagazineInnovation rarely sleeps in this industry, and the RF laminate segment offers a perfect example. RF materials have continued to evolve, providing PCB designers much more than an either/or choice. I asked materials expert Alun Morgan, technology ambassador for the Ventec International Group, to walk us through the available RF material sets and how smart material selection can ease the burden on RF designers and design engineers.
DuPont Announces Additional Directors for the Planned Independent Electronics Company
04/18/2025 | DuPontDuPont announced that Karin De Bondt and Anne Noonan will become members of the future board of directors for the independent Electronics public company that will be created following its intended spin-off from DuPont, which is targeted for November 1, 2025.
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.