A Quantum Leap
September 18, 2019 | University of California - Santa BarbaraEstimated reading time: 7 minutes

We hear a lot these days about the coming quantum revolution. Efforts to understand, develop, and characterize quantum materials — defined broadly as those displaying characteristics that can be explained only by quantum mechanics and not by classical physics — are intensifying.
Researchers around the world are racing to understand these materials and harness their unique qualities to develop revolutionary quantum technologies for quantum computing, communications, sensing, simulation and other quantum technologies not yet imaginable.
This week, UC Santa Barbara stepped to the front of that worldwide research race by being named the site of the nation’s first Quantum Foundry.
Funded by an initial six-year, $25-million grant from the National Science Foundation (NSF), the project, known officially as the UC Santa Barbara NSF Quantum Foundry, will involve 20 faculty members from the campus’s materials, physics, chemistry, mechanical engineering and computer science departments, plus myriad collaborating partners. The new center will be anchored within the California Nanosystems Institute (CNSI) in Elings Hall.
The grant provides substantial funding to build equipment and develop tools necessary to the effort. It also supports a multi-front research mission comprising collaborative interdisciplinary projects within a network of university, industry, and national-laboratory partners to create, process, and characterize materials for quantum information science. The Foundry will also develop outreach and educational programs aimed at familiarizing students at all levels with quantum science, creating a new paradigm for training students in the rapidly evolving field of quantum information science and engaging with industrial partners to accelerate development of the coming quantum workforce.
“We are extremely proud that the National Science Foundation has chosen UC Santa Barbara as home to the nation’s first NSF-funded Quantum Foundry,” said Chancellor Henry T. Yang. “The award is a testament to the strength of our University’s interdisciplinary science, particularly in materials, physics and chemistry, which lie at the core of quantum endeavors. It also recognizes our proven track record of working closely with industry to bring technologies to practical application, our state-of-the-art facilities and our educational and outreach programs that are mutually complementary with our research.
“Under the direction of physics professor Ania Bleszynski Jayich and materials professor Stephen Wilson the foundry will provide a collaborative environment for researchers to continue exploring quantum phenomena, designing quantum materials and building instruments and computers based on the basic principles of quantum mechanics,” Yang added.
Said Joseph Incandela, the campus’s vice chancellor for research, “UC Santa Barbara is a natural choice for the NSF quantum materials Foundry. We have outstanding faculty, researchers, and facilities, and a great tradition of multidisciplinary collaboration. Together with our excellent students and close industry partnerships, they have created a dynamic environment where research gets translated into important technologies.”
“Being selected to build and host the nation’s first Quantum Foundry is tremendously exciting and extremely important,” said Rod Alferness, dean of the College of Engineering. “It recognizes the vision and the decades of work that have made UC Santa Barbara a truly world-leading institution worthy of assuming a leadership role in a mission as important as advancing quantum science and the transformative technologies it promises to enable.”
“Advances in quantum science require a highly integrated interdisciplinary approach, because there are many hard challenges that need to be solved on many fronts,” said Bleszynski Jayich. “One of the big ideas behind the Foundry is to take these early theoretical ideas that are just beginning to be experimentally viable and use quantum mechanics to produce technologies that can outperform classical technologies.”
Doing so, however, will require new materials.
“Quantum technologies are fundamentally materials-limited, and there needs to be some sort of leap or evolution of the types of materials we can harness,” noted Wilson. “The Foundry is where we will try to identify and create those materials.”
Research Areas and Infrastructure
Quantum Foundry research will be pursued in three main areas, or “thrusts”:
- Natively Entangled Materials, which relates to identifying and characterizing materials that intrinsically host anyon excitations and long-range entangled states with topological, or structural, protection against decoherence. These include new intrinsic topological superconductors and quantum spin liquids, as well as materials that enable topological quantum computing.
- Interfaced Topological States, in which researchers will seek to create and control protected quantum states in hybrid materials.
- Coherent Quantum Interfaces, where the focus will be on engineering materials having localized quantum states that can be interfaced with various other quantum degrees of freedom (e.g. photons or phonons) for distributing quantum information while retaining robust coherence.
Developing these new materials and assessing their potential for hosting the needed coherent quantum state requires specialized equipment, much of which does not exist yet. A significant portion of the NSF grant is designated to develop such infrastructure, both to purchase required tools and equipment and to fabricate new tools necessary both to grow and characterize the quantum states in the new materials, Wilson said.
UC Santa Barbara’s deep well of shared materials growth and characterization infrastructure was also a factor in securing the grant. The Foundry will leverage existing facilities, such as the large suite of instrumentation shared via the Materials Research Lab and the California Nanosystems Institute, multiple molecular beam epitaxy (MBE) growth chambers (the university has the largest number of MBE apparatuses in academia), unique optical facilities such as the Terahertz Facility, state-of-the-art clean rooms, and others among the more than 300 shared instruments on campus.
Page 1 of 2
Suggested Items
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.
Real Time with... IPC APEX EXPO 2025: DuPont Electronics Materials and Innovations
04/23/2025 | Real Time with...IPC APEX EXPODuPont is many things to many markets, but DuPont Electronics Materials is, perhaps, a bit out of the DuPont "norm," developing specialized electronic materials that are particularly focused on challenging areas such as flex circuits, high power PCBs and products that must withstand harsh environments. At IPC APEX EXPO, Marcy LaRont sat down with Shannon Dugan from DuPont Electronics Materials to discuss some big news. They are being spun off into an independent entity with a new CEO having just been announced as the show wrapped.
Material Selection and RF Design
04/21/2025 | Andy Shaughnessy, Design007 MagazineInnovation rarely sleeps in this industry, and the RF laminate segment offers a perfect example. RF materials have continued to evolve, providing PCB designers much more than an either/or choice. I asked materials expert Alun Morgan, technology ambassador for the Ventec International Group, to walk us through the available RF material sets and how smart material selection can ease the burden on RF designers and design engineers.
DuPont Announces Additional Directors for the Planned Independent Electronics Company
04/18/2025 | DuPontDuPont announced that Karin De Bondt and Anne Noonan will become members of the future board of directors for the independent Electronics public company that will be created following its intended spin-off from DuPont, which is targeted for November 1, 2025.
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.