Researchers Explore Fish Movement to Enhance Underwater Robots
September 19, 2019 | Pennsylvania State UniversityEstimated reading time: 2 minutes

To understand the sensing, control and physics of fish-swimming with the goal of mimicking their performance in advanced robotics, researchers in the Penn State Department of Mechanical Engineering, in collaboration with the University of Houston and the University of Virginia, have recently been awarded a $1.2 million grant from the National Science Foundation (NSF).
Penn State’s Bo Cheng, assistant professor of mechanical engineering, and Asok Ray, distinguished professor of mechanical engineering, will receive $550,000 of the grant as the principal investigators to develop a bio-inspired robot fish platform and the corresponding learning algorithm to control and optimize its movements in underwater environments.
“We essentially want to study locomotion in fluids, by learning how fish swim and then use that fundamental knowledge to optimize robotic swimming,” Cheng said. “The high-level objective is to understand how structure can move efficiently in water.”
At the University of Houston, researchers will develop a stretchable skin with sensors to gather flow and pressure data while the robot is moving within the water. Meanwhile, at the University of Virginia, researchers will study the physics of the fluid and its corresponding impact on the structure of the robot.
This data will inform the work at Penn State in several ways: The corresponding robot fish platform will use the sensors to detect nearby objects to adjust its path accordingly and be able to optimize the control strategy of the robot’s movement in fluid.
“Through this collaboration, the key problem we hope to understand is the fundamental nature of fluid structure interaction in the context of underwater locomotion, investigated as a biologically-inspired, cyber-physical system.” Cheng said.
Ray explained similar problems are studied extensively in the aerospace industry, where aircrafts contend with the fluid dynamics of the atmosphere and wind patterns.
“However, there is less work exploring the impacts in underwater technology,” he said. “There will be significant technical differences and challenges, but the knowledge can be applied to many other disciplines.”
Cheng’s work largely examines flying animals to better understand and quantify their biologically masterful movements. By unlocking the science behind these fundamental challenges, more powerful and efficient robotics can be developed.
The knowledge gleaned from this project will also serve to elevate Ray’s research.
“This project is of great interest to my work in robotics, since the fluid environment is much more complicated than where I usually conduct my work,” he said. “It is fascinating to mix the physics of fluids with the ability of sensors, robots and controls.”
The project will be funded for three years by the NSF Cyber-Physical Systems (CPS) program, which supports research into engineered systems that are built and optimized with the seamless integration of computational and physical components.
“The work is truly in the spirit of CPS, it merges the physical challenges of moving within water and how the different disciplines inside the robot are sensing, controlling and learning,” Ray said. “It is important to unify this knowledge.”
By taking this deep dive into the physics of fish locomotion, the researchers hope to make discoveries that influence a new understanding of robotics development. For instance, it could enhance search-and-rescue missions in the ocean or in confined underwater environments or help develop nanoscale technology that could deliver medical treatments by swimming in blood vessels.
Looking ahead, the researchers appear to be wading into a sea of potentially unlimited applications.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Honeywell-Led Consortium Receives UK Government Funding to Revolutionize Aerospace Manufacturing
09/02/2025 | HoneywellA consortium led by Honeywell has received UK Government funding for a project that aims to revolutionize how critical aerospace technologies are manufactured in the UK through the use of AI and additive manufacturing.
Coherent Announces Agreement to Sell Aerospace and Defense Business to Advent for $400 Million
08/15/2025 | AdventCoherent Corp., a global leader in photonics, today announced that it has entered into a definitive agreement to sell its Aerospace and Defense business to Advent, a leading global private equity investor, for $400 million. Proceeds will be used to reduce debt, which will be immediately accretive to Coherent’s EPS.
KYZEN Partners with LPW to Elevate High Purity Cleaning with Cutting-Edge Cyclic Nucleation Technology in North America
08/13/2025 | KYZEN'KYZEN, a global leader in advanced cleaning solutions, has reached a major milestone in high-purity cleaning with the addition of a state-of-the-art Vacuum Cyclic Nucleation System at its North American Application Lab.
Jeh Aerospace Raises $11M to Boost Aircraft Supply Chain
08/12/2025 | I-Connect007 Editorial TeamJeh Aerospace, the high-precision aerospace and defense manufacturing startup founded by Vishal Sanghavi and Venkatesh Mudragalla, has raised $11 million in a Series A round led by Elevation Capital, with support from General Catalyst, to scale its commercial aircraft supply chain manufacturing in India, according to OEM.
New Frontier Aerospace and Air Force Institute of Technology Sign CRADA to Advance Hypersonic VTOL Aircraft
08/05/2025 | PR NewswireNew Frontier Aerospace (NFA) is excited to announce a Collaborative Research and Development Agreement (CRADA) with the Air Force Institute of Technology (AFIT) aimed at advancing an innovative rocket-powered hypersonic Vertical Takeoff and Landing (VTOL) aircraft.