Research Could Help Flexible Technology Last Longer, Avoid Critical Failures
September 25, 2019 | Binghamton UniversityEstimated reading time: 3 minutes
Whether from regular use, overuse or abuse, every device is bound to develop cracks at some point. That’s just the nature of things.
Cracks can be especially dangerous, though, when working with biomedical devices that can mean life or death to a patient.
A new study from a Binghamton University research team uses the topography of human skin as a model not for preventing cracks but for directing them in the best way possible to avoid critical components and make repairs easy.
The study, published Sept. 17 in the journal Scientific Reports, is led by Guy German, an associate professor for biomedical engineering in the Thomas J. Watson School of Engineering and Applied Science, and PhD student Christopher Maiorana.
For the study, Maiorana engineered a series of single-layer and dual-layer membranes from silicone-based polydimethylsiloxane (PDMS), an inert and nontoxic material used in biomedical research. Embedded into the layers are tiny channels meant to guide any cracks that form – which, when part of a biomedical device, would give more control over how the cracks form. Potential damage could go around critical areas of flexible electronics, for instance, increasing its functional lifespan.
“In this relatively new field of hyperelastic materials—materials that can really stretch—there’s been a lot of work, but not in the area of fracture control,” German said. “Fracture control has only been explored in more brittle materials.”
What’s particularly important, Maiorana and German said, is having PDMS as the basis for the flexible membrane, since it is known for its wide variety of uses. The study also integrates other common materials.
“We do it without using any exotic material,” Maiorana said. “We’re not inventing some new metal or ceramic. We’re using rubber or modifying normal glass to do these things. We’ve taken this really basic idea and made it functional.”
German’s ongoing research on human skin made him realize that the outermost layer—known as the stratum corneum—exhibits a network of v-shaped topographical microchannels that appear to be capable of guiding fractures to the skin.
This study began with the idea of recreating this effect in nonbiological materials. Previous attempts to direct microcracks have utilized more solid means, such as copper films around the most sensitive parts of flexible electronics components.
“Even though this membrane looks and feels exactly like a normal, boring membrane,” he said, “you stretch it and you can get cracks to deviate at 45-degree angles away from where it ordinarily would have cracked. I think it’s pretty cool.”
Because of the long fabrication period for the membranes, Maiorana often would spend a week to produce one and then tear it apart in a matter of seconds—only to start all over again with the next one. He credited the increasing precision of additive manufacturing and its ability to print ever-smaller features for making the production of the membranes possible.
“Chris was designing his own fabrication systems to make these substrates,” German said, “because he had to 3-D print a mold and then use this clever system to control the depth of these canyons in the substrate. It’s really technically challenging.”
Maiorana added: “There is a certain level of art to it. You think there’s an entire scientific process, and there is, but part of it is that you’ve done this process before and you know what it’s supposed to look like.”
This study, German said, furthers the quest of biomedical engineers to learn from what nature has already perfected. “It doesn’t matter how good an engineer you are—evolution thought of it first,” he said. “Evolution always wins.”
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.