Mosquito Eye Inspires Artificial Compound Lens
September 27, 2019 | ACSEstimated reading time: 2 minutes
Anyone who’s tried to swat a pesky mosquito knows how quickly the insects can evade a hand or fly swatter. The pests’ compound eyes, which provide a wide field of view, are largely responsible for these lightning-fast actions. Now, researchers reporting in ACS Applied Materials & Interfaces have developed compound lenses inspired by the mosquito eye that could someday find applications in autonomous vehicles, robots or medical devices.
Compound eyes, found in most arthropods, consist of many microscopic lenses organized on a curved array. Each tiny lens captures an individual image, and the mosquito’s brain integrates all of the images to achieve peripheral vision without head or eye movement. The simplicity and multifunctionality of compound eyes make them good candidates for miniaturized vision systems, which could be used by drones or robots to rapidly image their surroundings. Joelle Frechette and colleagues wanted to develop a liquid manufacturing process to make compound lenses with most of the features of the mosquito eye.
To make each microlens, the researchers used a capillary microfluidic device to produce oil droplets surrounded by silica nanoparticles. Then, they organized many of these microlenses into a closely packed array around a larger oil droplet. They polymerized the structure with ultraviolet light to yield a compound lens with a viewing angle of 149 degrees, similar to that of the mosquito eye. The silica nanoparticles coating each microlens had antifogging properties, reminiscent of nanostructures on mosquito eyes that allow the insect organs to function in humid environments. The researchers could move, deform and relocate the fluid lenses, allowing them to create arrays of compound lenses with even greater viewing capabilities.
Anyone who’s tried to swat a pesky mosquito knows how quickly the insects can evade a hand or fly swatter. The pests’ compound eyes, which provide a wide field of view, are largely responsible for these lightning-fast actions. Now, researchers reporting in ACS Applied Materials & Interfaces have developed compound lenses inspired by the mosquito eye that could someday find applications in autonomous vehicles, robots or medical devices.
Compound eyes, found in most arthropods, consist of many microscopic lenses organized on a curved array. Each tiny lens captures an individual image, and the mosquito’s brain integrates all of the images to achieve peripheral vision without head or eye movement. The simplicity and multifunctionality of compound eyes make them good candidates for miniaturized vision systems, which could be used by drones or robots to rapidly image their surroundings. Joelle Frechette and colleagues wanted to develop a liquid manufacturing process to make compound lenses with most of the features of the mosquito eye.
To make each microlens, the researchers used a capillary microfluidic device to produce oil droplets surrounded by silica nanoparticles. Then, they organized many of these microlenses into a closely packed array around a larger oil droplet. They polymerized the structure with ultraviolet light to yield a compound lens with a viewing angle of 149 degrees, similar to that of the mosquito eye. The silica nanoparticles coating each microlens had antifogging properties, reminiscent of nanostructures on mosquito eyes that allow the insect organs to function in humid environments. The researchers could move, deform and relocate the fluid lenses, allowing them to create arrays of compound lenses with even greater viewing capabilities.
Watch a video of the lenses here.
Suggested Items
Smartwatches, Smart Rings Set to Lead Another Growth Surge for Wearables Market
02/03/2025 | ABI ResearchThe wearables sector, following a pandemic-driven surge in 2020, is poised for a return to growth. Fueled by continued post-pandemic consumer interest in healthcare and the availability of advanced devices, the market will be led by smartwatches and emerging smart rings.
Global Citizenship: The Future of U.S.-China Collaborations
12/30/2024 | Tom Yang -- Column: Global CitizenshipMany of my friends say that I am an eternal optimist and that is probably true. I see things as they are and ask how they could be better. For example, I know that the relationship between the U.S. and China, at times, faces challenges. But as an optimist, I believe that regardless of the geopolitical arena, the companies in our industry can rise up and work together.
Solid-State Batteries Enter Pilot Production, Costs Expected to Drop to CNY 0.6–0.7/Wh by 2035
11/01/2024 | TrendForceThe global pursuit and anticipation of applications for solid-state batteries (SSBs) have accelerated the commercialization process of this technology.
HBM5 20hi Stack to Adopt Hybrid Bonding Technology, Potentially Transforming Business Models
10/30/2024 | TrendForceTrendForce reports that the focus on HBM products in the DRAM industry is increasingly turning attention toward advanced packaging technologies like hybrid bonding.
Scrutinizing Solder Printing
09/10/2024 | Nolan Johnson, I-Connect007As members of the technical staff at Indium, Adam Murling, technical manager, and Ron Lasky, senior technologist and professor at Dartmouth University, know their way around metallurgy and solder formulation. I corralled them for a conversation on solder application techniques from the solder’s perspective and their insights did not disappoint.