Moving E-Cars Into the Fast Lane
October 2, 2019 | Fraunhofer-GesellschaftEstimated reading time: 2 minutes
Researchers have been looking into silicon carbide, a promising alternative material for the semiconductor industry, for several years now. The Fraunhofer Institute for Reliability and Microintegration IZM joined forces with partners in the SiC Module project to ramp up this type of power semiconductor for industrial manufacturing. Their effort goes to boost the efficiency of drivetrains in electric vehicles and extend these vehicles’ range.
Embedded silicon carbide on its way to mass manufacturing for e-mobility applications.
Electromobility has its naysayers, with some skeptics pointing to limitations such as electric cars’ top speed and maximum range. Both depend on the built-in power electronics, the electronic heart of e-mobility. Size, weight and efficiency are three make-or-break factors for power electronics destined for installation in e-cars. Silicon carbide (SiC), a new semiconductor material, ticks all three boxes. It is more efficient yet leaves a smaller footprint than conventional semiconductors such as silicon.
Even so, silicon carbide is not to be found in any e-car on the road today. As it stands, this semiconductor material is still confined to research labs. To port it from the lab to the factory, the SiC Module project has factored all the conditions of industrial manufacturing into the equation from the outset. The module’s design is a case in point: Researchers at the Fraunhofer IZM are basing it on the structure of the classic printed circuit board that the industry has long favored. This should expedite its rollout.
Shorter power lines, better power routing
The module is also benefitting from the latest scientific advances. Rather than wire-bonding the semiconductor to the package, the researchers decided to embed it directly in the circuit with a galvanic-assisted copper contact to shorten the wires and optimize power routing. The team also brought the potential customer on board for this development effort. In the project’s first year, they drew up a specification sheet pinpointing the electrical, thermal and performance requirements for the module and semiconductor. The researchers worked closely with users, catering to their wishes when they determined the product specs. Automakers, component suppliers and OEMs were directly involved in the effort to map out the power-electronic modules’ size, layout and electrical circuits. This collective sought to make the most of the space available in the vehicles’ powertrain. Lars Böttcher, group leader at the Fraunhofer IZM and head of the SiC sub-project project, says, “We’re going beyond a general proof of concept because we are developing more than just a prototype in this project”. The goal is to ramp up both the new semiconductor material silicon carbide and the embedding technology for mass production.
The Federal Ministry of Education and Research is funding the project with 3.89 million euros as part of the E-Mobility Call. Slated to run from January 2018 to December 2020, the project involves six partners alongside the Fraunhofer IZM: AixControl – Gesellschaft für leistungselektronische Systemlösungen mbH, Conti Temic microelectronic GmbH, Rheinisch-Westfälischen Technischen Hochschule Aachen, Robert Bosch GmbH, Schweizer Electronic AG, and TLK-Thermo GmbH.
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.