From Health Care to Space Robotics
October 10, 2019 | TUMEstimated reading time: 2 minutes
Each year, US space agency NASA asks startups with ideas that could improve space exploration to apply for their iTech initiative. Among the ten finalists in the recent competition (October 7 and 8) is MyelinS. This startup at the Technical University of Munich (TUM) began developing software for intelligent prostheses and ended up inventing new ways for astronauts and robots to interact in outer space.
Robots are an indispensable part of space exploration. While machines like the Mars rover "Curiosity" resemble very basic model cars, there are plans to use humanoid robots during space missions. Remotely controlled by humans from inside spaceships or space stations these robonauts could be assigned dangerous tasks. Software designed by startup MyelinS could be a part of these future missions.
“Our software provides three basic features,“ says Zied Tayeb, a doctoral candidate at TUM's Institute for Cognitive Systems and, together with Samaher Garbaya, one of the minds behind MyelinS. “The first feature is navigation: We use machine learning algorithms to enable a robot to create an internal map of its surroundings and avoid obstacles.” This is important even in remotely-controlled robots, since it enables the pilot to concentrate on the actual task and let the robot deal with the navigation—a concept called shared control. “The second feature is tactile feedback,” continues Tayeb. “Our software can learn to translate input from the robots tactile sensors into output generated by vibration motors. Imagine, for example, a robot handling rock samples: The scientist in control would be able to feel the structure of these samples.”
Curiosity as a feature
The third major feature of the MyelinS software is curiosity. Many great discoveries start with a sentence like “Wait … that looks interesting“. “We use machine learning to teach our algorithm which kinds of things 'look interesting' and should be highlighted,” says Zied Tayeb. “Depending on which human expert trained the machine’s curiosity, this could be strange rocks, bent machine parts or three-eyed fish.” The MyelinS software is platform-independent and thus can be used as an interface for many different kinds of robots.
When Zied Tayeb and Samaher Garbaya first thought about founding a company, they went in a very different direction. Tayeb had created “Gumpy,” an open source software package for brain-computer interfaces. “Gumpy” included the basic machine learning algorithms for the tactile feedback. “Our original project was to create software for prostheses that let amputees feel their limbs,” says Tayeb. “We created an advanced version of Gumpy with better algorithms and more features.” Together with two other former TUM students, Tayeb and Garbaya validated the functionality of their software in cooperation with people with missing limbs.
“About a year ago, I was talking to an old mentor. When he heard about what we were doing, he pointed out that space agencies might be very interested in brain-computer interfaces for their robots,” Tayeb narrates. “It wasn't easy to let the prosthetics project go , but the prospect of being a part of space exploration was an opportunity we didn't want to miss.” While the two fields may seem very different at first, the requirements for human-brain interfaces are in fact similar, he explains.
Support from TUM
The MyelinS team was supported by the TUM Gründungsberatung. They also received guidance and mentorship from UnternehmerTUM, the Center for Innovation and Business Creation at TUM—among others, they took part in the Xplore Pre-Incubation Bootcamp. „Gordon Cheng, Professor of Cognitive Systems, too, was also very supportive“, Tayeb adds. In the months to come, he and his colleagues are planning to formally found their company.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Secure Semiconductor Manufacturing Acquires Full SMT Line from Manncorp
09/11/2025 | ManncorpSecure Semiconductor Manufacturing, LLC (SSM), an American-owned company dedicated to producing secure printed wiring boards and advanced assembly solutions in the MidWest USA, today announced the acquisition of a complete surface mount technology (SMT) line from Manncorp.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
MS2 Technologies, LLC/P. Kay Focuses on Central America with First Installation in Honduras
08/24/2025 | P. Kay Metal, Inc.This year MS2 Technologies has turned their focused to the growing electronics market in Central America. With that focus came the adaptation of MS2 and the Akila System from a Honduras-based corporation with manufacturing plants in both Honduras and Mexico.
SEL: Revolutionizing PCB Production Through MES, Partnerships, and Vision
08/21/2025 | Barry Matties, I-Connect007Two years ago, we visited Schweitzer Engineering Laboratories (SEL) to better understand its new captive greenfield PCB facility. We recently returned, this time to discuss how this bold vision has transformed the industry. Barry Matties met with John Hendrickson, engineering director, and Jessi Hall, vice president of vertical integration, to discuss the transformative capabilities of Factory Core, SEL’s custom manufacturing execution system (MES), which allows for real-time monitoring of workflow and machine performance, and has led to impressive improvements in quality and cost efficiency.
Smart Automation: Pick-and-place Machines—What Matters in 2025
08/12/2025 | Josh Casper -- Column: Smart AutomationWhen people talk about placement technology, they often zero in on speed: How fast can a machine place components? What's the quoted components per hour (CPH)? How many nozzles are on the head? While these metrics matter, on most production floors, the fastest machine on paper isn’t always the most productive.