Taking 2D Materials to the MAX
October 17, 2019 | KAUSTEstimated reading time: 3 minutes
“Having the know-how to prepare good-quality MXenes is key to achieving excellent performance,” says Alshareef. To make the 2D MXene atomic crystals, the parent material, known as MAX phase, is first prepared using conventional ceramic processing technology. The M in MAX represents a transition metal, such as titanium; A is typically aluminum; and X is carbon or nitrogen. Solution processing methods are used to selectively remove aluminum to create two-dimensional crystals. These crystals are placed in suspensions that are then used to make films, gels, sheets and quantum dots of MXene.
The challenges in making MXenes is that temperatures as high as 1700 degrees Celsius are needed to make the parent MAX phase, and HF is needed to etch out the aluminum. “We are developing processes to simplify the synthesis protocols and to make them more environmentally friendly and energy efficient to prepare,” Alshareef says.
Developing New Devices
Recently, Alshareef and his group developed MXene-based soft, super-stretchy polymers called hydrogels. “We call it MXene smart skin,” Alshareef says. “It is stretchable by 3,400 percent, self-healing, soft and can sense just about anything—touch force, direction, speed, voice, pressure, temperature, humidity.” The team showed that a small piece of smart skin placed on the forehead could differentiate multiple facial expressions, while a piece placed on the skin over the voice box could differentiate each letter of the alphabet just by measuring voice box movement.
Sensor devices, which can capitalize on the large surface area and extraordinary conductivity of MXenes, are another promising avenue of research. Most recently, the team created a MXene-based wearable sweat sensor to monitor key biomarkers in perspiration. The stretchable sensor can simultaneously measure multiple parameters, including lactate, glucose, pH and zinc. “It measures and transmits directly to your phone—and it works,” Alshareef says. “Our prototype wearable sweat sensor is functioning well, and our future efforts will focus on miniaturization.”
Expanding MXene Research Across KAUST
Alshareef’s collaborations across the KAUST campus demonstrate the broad potential of MXenes. He has been working with Omar Mohammed to understand their fundamental optoelectronic properties and to fabricate MXene-based photonic and plasmonic devices; Peng Wang, from the Center for Water Desalination and Reuse, to develop osmotic power generators; and Xixiang Zhang to explore the two-dimensional nature of MXenes to grow two-dimensional ferroelectric, electro-optic and piezoelectric crystals that inherit the properties of MXenes.
Page 2 of 2Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.