Research Seeks to Improve Computers’ Energy Efficiency on Micro, Macro Levels
October 21, 2019 | Binghamton UniversityEstimated reading time: 2 minutes

Today’s computer engineers face two knotty problems.
One is on the micro level: As processors are made on smaller and smaller chips, power sources for flexible or wearable tech need to be downsized and integrated by the same proportions.
The other is on the macro level: With the increasing number of high-capacity servers needed to support the “internet of things” that will connect all electronic devices, energy efficiency has become more important than ever. It doesn’t just keep costs down but also is good for the planet.
A new joint study from Binghamton University and Purdue University will examine both ends of the issue. Working through the newly established Center for Heterogeneous Integration Research in Packaging (CHIRP), principal investigator Pritam Das and co-PI Kanad Ghose will research higher-voltage package power delivery and power-management systems for high-end systems-in-package (SiP) devices.
Funding the study over three years will be a $350,000 grant from the Semiconductor Research Corp., a nonprofit tech consortium that counts Intel, IBM, Microsoft, Samsung, Qualcomm and Texas Instruments as well as the National Science Foundation among its supporting members.
Das, an assistant professor of electrical and computer engineering at Binghamton’s Thomas J. Watson School of Engineering and Applied Science, said the research will look beyond silicon devices to new materials such as gallium nitride. It also will integrate new theories such as multi-objective optimization processes and nonlinear control theory.
The study will focus on 45-volt DC power supplies that are stepped down to 1 to 5 volts at a high amperage to run the microprocessors. This should lead to increased high-power densities that benefits both small and large devices.
The efficiency of current technology is 88 to 90%, but Das believes his and Ghose’s ideas will increase it to 95 or 96%. Ghose, a professor in the Watson School’s Department of Computer Science, is the site director for Binghamton’s Center for Energy-Smart Electronic Systems (ES2).
“For every watt you use on these power supplies, you lose about 10% of that power,” said Das, who has been at Binghamton for two years. “Consequently, the exponentially rising number of servers means a huge amount of energy that is cumulatively wasted. On top of that, it increases the power load needed to cool down a data center so that network servers are working at the proper temperature.
Even though the research remains in preliminary stages, Das already has received calls from SRC partners inquiring about it. Intel, for instance, is interested in possible use of the technology developed in this project on its next-generation high-speed computer graphics cards.
“After we proceed with some research and get more in-depth with the work,” Das said, “I think we will be closely interacting with these companies for the real application of these systems onto their next-generation computing loads and microprocessors.”
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
IPS, SEL Raise the Bar for ENIG Automation in North America
09/11/2025 | Mike Brask, IPSIPS has installed a state-of-the-art automated ENIG plating line at Schweitzer Engineering Laboratories’ PCB facility in Moscow, Idaho. The 81-foot, fully enclosed line sets a new standard for automation, safety, and efficiency in North American PCB manufacturing and represents one of the largest fully enclosed final finish lines in operation.
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.
U.S. Army Begins Fielding BAE Systems’ Mission-critical Software-defined Radios Across Rotary-wing Aviation Fleet
09/08/2025 | BAE SystemsBAE Systems’ AN/ARC-231A Multi-mode Aviation Radio Set (MARS) has completed initial installation and is operationally ready for use today on select U.S. Army rotary-wing aircraft.