SMTAI 2019: To the Moon and Beyond
October 22, 2019 | Barry Matties, I-Connect007Estimated reading time: 12 minutes
Matties: You keyed in early on how the technology that we used for the first moon launch versus what we’re doing today is generationally different. What are the key changes in the program from a technology base that’s being implemented?
Hawes: Certainly, there are new materials that we use that weren’t available back in that time, and our manufacturing process and capabilities are much improved. I joke with people who are early in their career that I started my college career with the slide rule, and it is an amazing process to see how everything is designed and manufactured digitally. Today, things are inspected automatically with a different set of tools. With 3D printing, you can design devices that would be impossible to manufacture in traditional ways. For example, we’re looking at making 3D-printed propellant tanks.
Matties: I would think that 3D printers are going to be commonplace on space stations as a tool for the astronauts to use. 3D printers on space stations will be like the Star Trek replicators, so to speak.
Hawes: Ultimately, they will be. That has been done some on the Space Station so far. Many people want to look at if we can manufacture things out of lunar regolith or make structures out of the soil based on the metal content.
Matties: That’s exactly the question I was going to ask because you may have the printers, but you’re going to need some base material.
Hawes: That’s right. And with what’s available, the question is, “How much purification, if you will, would have to be done with the lunar or Mars material to be able to make it useful?” It’s a fascinating set of options because the ultimate goal is to “live off the land.” You can’t afford a logistics trail.
Matties: One of the core differences in the technology from the early space moonwalk to today is the analysis tools that we’re able to carry with us. The depth of knowledge that we’re going to gain from that has to be monumentally different.
Hawes: And that grows exponentially, all the time, in terms of your computing capability and the types of things that you’re doing, which is an amazing process.
Matties: From your expansive career, what is one of the best memories you have from your work here?
Hawes: I’ve had a great run, including being able to learn from a lot of the folks that were involved with Apollo. When I started early at the Johnson Space Center (JSC) , most of the people were still there, and so even though we were working on the space shuttle, you still had all of that history and context from the people who did it. I also enjoyed all my work on the International Space Station, which took me from a mostly domestic program to a broad, international program. Then, in the early ‘90s, we invited the Russians into that partnership. Being a child of the Cold War, so to speak, to rocking through Red Square and dealing with Russian teams on a daily basis was amazing. And now, we have an opportunity to take us back to the moon. I’ve had some good highlights.
Matties: You’re in a unique position with a lot of engineering experience. What advice would you give to a young engineer looking to move into our industry or other industries?
Hawes: There are a number of challenges that students coming right out of college now face. Part of it is having an ability to try enough things and have discernment throughout the process. Do you want to be a deep, disciplined, subject-matter expert type of engineer, or do you want to be a broad systems type engineer? You’re not likely to know that until you get into your field of practice and see what the options are. Many companies provide some capability to do that, but that’s something that we struggle with all the time. I talked to a group of younger employees yesterday afternoon about how can we offer some visibility into different types of work and opportunities to help them with that discernment.
I was lucky. I fell into a space shuttle operations team, so from the get-go, it was much broader, which suited me well. Coming out of school, I would not have known to seek that kind of position. So, how do we help early-career folks discern what is best for them? What are their interests and talents? Most science and engineering university programs are very intensive, and there’s so much material that you have to learn. It’s hard to add all these extra pieces to think about too. Some young people might be interested in the entrepreneurial side of the industry, so they also need to figure out how to run a business.
Matties: Another thought that strikes me is in the early days of the moon launch, when Kennedy first came out, America and the world were focused on the vision he built. Today, when we have spaceships take off and return to earth, it seems to me that aside from a few, it’s a “non-event” for most people, yet it’s such a spectacular achievement still.
Hawes: One of the big differences we see is that these events can still be positive but for a much shorter period of time. For instance, some of our test missions, like the test flight with the abort system we did in July, captured the public’s interest for a couple of days.
Matties: After the Space Shuttle, the next big event is when we get the man back on the moon or a footprint on Mars.
Hawes: I’m hopeful that it will be a little better than that, and we’ve seen some data to support that too. When we did our test flight in 2014, we launched Orion out 3,600 miles; the goal was to test the heat-shield material, go out that distance, and loop back so that we could get about 84% of the lunar return speed. We did a whole bunch of other things, but this was all without crew. We still had a large social media presence, as well as a large traditional media presence, and it was sustained for a number of days throughout that process.
One thing that was interesting was how we had cameras looking out of the window, and you could tell we were far away from the earth. This wasn’t the Space Station; we were 10 times further than the Space Station was from the earth, and people recognized that it was different and more like Apollo and going back to the moon. I was impressed that people seem to understand that difference, but I still wonder how we sustain people’s interest in the long term when all of our attention spans are shorter.
Matties: Seeing the rockets land back on a moving platform in the middle of the ocean was quite remarkable; that was an achievement that captured a lot of attention. Are there any thoughts that you’d like to share with our readership that we haven’t talked about?
Hawes: Groups like this serve an important role in our fundamental technologies and how we manufacture and build things. In my part of the business, I lay out the big mission objectives and requirements; at that point, I’m allowed to be impossible and outrageous. But it’s organizations like SMTA and others throughout our supply chain that continue to push the boundaries. We have an amazing supply chain all across the U.S. with companies that do incredible manufacturing work in terms of being higher-quality, more reliable, and cheaper. If we’re going to get back to the moon or get onto Mars, we have to continue to make these advances.
Matties: What’s your takeaway from your tour of the SMTAI show floor?
Hawes: It’s fascinating to see all the pieces put together. In our Lockheed Martin manufacturing facilities, I’ve seen bits and pieces of these processes, but seeing them all together as well as the technological evolution that companies are using to solve different types of problems is interesting and helpful. Now, I need to go back and make sure that our whole supply chain is using all of these capabilities.
Matties: I appreciate your time today very much.
Hawes: Thank you.
Further Reading
- Orion Spacecraft
- NASA, “NASA Commits to Long-term Artemis Missions With Orion Production Contract,” September 23, 2019
Suggested Items
AirBorn Announces Agreement to be Acquired by Molex
11/18/2024 | PRNewswireAirBorn, a global manufacturer of high reliability electronics and components, announced it has entered into an agreement to be acquired by Molex, a leading global connectivity and electronics solutions provider.
RTX's Collins Aerospace to Provide UK Chinook Helicopters with Interoperable Avionics System
11/12/2024 | RTXCollins Aerospace, an RTX business, has received a $19 million contract from the Department of Defense to equip a fleet of new H-47 Chinooks for the UK Royal Air Force with its Common Avionics Architecture System (CAAS) avionics management suite.
Lockheed Martin Skunk Works, the Royal Netherlands Aerospace Centre (NLR) Announce Strategic Collaboration
10/21/2024 | Lockheed MartinSkunk Works®, the renowned advanced development organization within Lockheed Martin Corporation and the Royal Netherlands Aerospace Centre (NLR), a premier knowledge institute and connecting link among science, industry, and government in the Netherlands, announced a strategic collaboration to advance mutual interests for enhanced security at the Netherlands Defense Industry Days event.
Altair Drives Aerospace Innovation at Motivo
10/17/2024 | AltairAltair, a global leader in computational intelligence, is proud to announce its collaboration with Motivo, a product engineering firm focused on translating forward-thinking visions into best-in-class products for clients in the mobility, energy, agriculture technology, and aerospace sectors. Motivo utilizes Altair’s unique combination of engineering consulting and software to drive innovation for organizations in the aerospace industry.
Airbus, Toshiba to Partner on Superconductivity Research
10/16/2024 | AirbusAirbus UpNext, a wholly-owned subsidiary of Airbus, and Toshiba Energy Systems & Solutions Corporation (Toshiba), Toshiba Group’s energy arm, will cooperate and mutualise experience on superconducting technologies for future hydrogen-powered aircraft.