Decreasing Bend Radius and Improving Reliability- Part III
December 18, 2019 | Kelsey Smith, All FlexEstimated reading time: 1 minute

Application: Design guidelines to improve the flexibility and reliability of flexible circuits.
Most issues that arise with flex circuits can be eliminated in the early stages of the design phase, and special planning must occur when the circuit is required to bend. Many novices will design a circuit that calls for bending the flex in too tight of a bend radius, which can cause damage to the circuit and lower the reliability of the end product. This is the third and final installment in a series of articles that will focus on the seven key aspects to consider when designing for maximum durability and maximum “flexibility." It is important to know that because flexibility is a relative term this study will instead use the term reducing bend radius. Below are three of the seven design strategies, please see Part I and Part II for more tips!
5. Apply strain relief at transition areas from stiffener to flex.
- Stiffener material is common in flex circuit designs that have soldered components. While this rigid material is necessary for the soldered components, it can cause reliability issues during installation when the flex is bent at the stiffener location toward the stiffener.
- If the flex material will be bending toward the stiffener, it is highly recommended that an epoxy bead of Ecobond 45 be applied.
6. Ensure vias are located at least .050” away from bend zones.
Fig. 1 - Examples of a flex circuit with a bend radius and a plated through-hole.
7. Always put a 3D representation of your bend to install configuration on your drawings.
- Many problems can be avoided by informing your flex circuit vendor what the final configuration is going to be once used, this enables them to evaluate for potential bend radius issues.
- Most flex circuit drawings are only 2D. By showing a picture of the final configuration you are encouraging the discussion regarding materials, discussion about minimum bend radius and letting the flex vendor raise any concerns before build.
Fig. 2 - Examples of a 3D drawing of a flex circuit.
Suggested Items
Bridging the Gap Between PCB Designers and Fabricators
04/03/2025 | Stephen V. Chavez, Siemens EDAWith today’s advanced EDA tools, designing complex PCBs in the virtual world does not necessarily mean they can be built in the real world. This makes the relationship between a PCB designer and a fabricator pivotal to the success of a project. In keeping with solid design for manufacturing (DFM) practices, clear and frequent communication is needed to dial and lock in design constraints that meet expectations while addressing manufacturing concerns.
IPC APEX EXPO Newcomer: Faith DeSaulnier of TTM Technologies
04/03/2025 | I-Connect007 Editorial TeamDuring the Newcomer’s Welcome Reception at IPC APEX EXPO, the I-Connect Editorial Team spoke with several first-time attendees. The following is our interview with Faith DeSaulnier, a process engineer based at TTM Technologies’ facility in Forest Grove, Oregon.
Ansys Semiconductor Solutions Certified by TSMC for Reliable, Accurate Analysis of Evolving Chip Designs
04/03/2025 | PRNewswireAnsys announced that PathFinder-SC is certified as a new ESD analysis solution for customers designing with TSMC's N2 silicon process technology. PathFinder-SC delivers a novel verification solution that provides superior capacity and performance, easily accommodating large designs in the cloud.
Real Time with... IPC APEX EXPO 2025: Insights into PCB Design and Manufacturing with Polar Instruments
04/03/2025 | Real Time with...IPC APEX EXPOErik Bateham discusses Polar's latest book, which enhances insights for PCB designers and manufacturers. The book, "The Designer's Guide to... More Secrets of High-Speed PCBs," features a guest chapter on 2D via design modeling. Erik highlights the industry's shift towards UHDI and the challenges in measuring at micron levels.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.