Bringing the Green Revolution to Electronics
March 1, 2020 | ACN NewswireEstimated reading time: 2 minutes

Researchers are investigating how to make electronic components from eco-friendly, biodegradable materials to help address a growing public health and environmental problem: around 50 million tonnes of electronic waste are produced every year.
Less than 20% of the e-waste we produce is formally recycled. Much of the rest ends up in landfills, contaminating soil and groundwater, or is informally recycled, exposing workers to hazardous substances like mercury, lead and cadmium. Improper e-waste management also leads to a significant loss of scarce and valuable raw materials, like gold, platinum and cobalt. According to a UN report, there is 100 times more gold in a tonne of e-waste than in a tonne of gold ore.
While natural biomaterials are flexible, cheap and biocompatible, they do not conduct an electric current very well. Researchers are exploring combinations with other materials to form viable biocomposite electronics, explain Ye Zhou of China's Shenzhen University and colleagues in the journal Science and Technology of Advanced Materials.
The scientists expect that including biocomposite materials in the design of electronic devices could lead to vast cost saving, open the door for new types of electronics due to the unique material properties, and find applications in implantable electronics due to their biodegradability.
For example, there is widespread interest in developing organic field effect transistors (FET), which use an electric field to control the flow of electric current and could be used in sensors and flexible flat-panel displays.
Flash memory devices and biosensor components made with biocomposites are also being studied. For example, one FET biosensor incorporated a calmodulin-modified nanowire transistor. Calmodulin is an acidic protein that can bind to different molecules, so the biosensor could be used for detecting calcium ions.
Researchers are especially keen to find biocomposite materials that work well in resistive random access memory (RRAM) devices. These devices have non-volatile memory: they can continue to store data even after the power switch is turned off. Biocomposite materials are used for the insulating layer sandwiched between two conductive layers. Researchers have experimented with dispersing different types of nanoparticles and quantum dots within natural materials, such as silk, gelatin and chitosan, to improve electron transfer. An RRAM made with cetyltrimethylammonium-treated DNA embedded with silver nanoparticles has also shown excellent performance.
"We believe that functional devices made with these fascinating materials will become promising candidates for commercial applications in the near future with the development of materials science and advances in device manufacturing and optimization technology," the researchers conclude.
Suggested Items
SERMA Microelectronics Expand its Facilities in La Rochelle
04/22/2025 | SERMA MicroelectronicsSERMA Microelectronics, a major player in specialized microelectronics, continues its growth with the acquisition of a building adjacent to its current site in La Rochelle.
UHDI Fundamentals: UHDI Drives Unique IoT Innovation in Farming
04/22/2025 | Anaya Vardya, American Standard CircuitsThe combination of UHDI's high-bandwidth capabilities and IoT's real-time data processing can lead to more efficient, immersive, and smarter IoT systems. This convergence of two revolutionary technologies is enabling quantum advancements in some very “unconventional” applications. The typical discussions around UHDI focus on our standard electronics industry market segments like milaero, medical, consumer electronics, etc. IoT is all about machines talking to other machines, machine learning, and artificial intelligence, but again, typically applied in our PCB and assembly operations.
Navigating Change, Mitigating Risk: We’ve Been Here Before
04/22/2025 | Marcy LaRont, PCB007 MagazineI visited with Tom Edman, president and CEO of TTM Technologies, and chair of the IPC Board of Directors. Tom candidly shares his insights into the implications of changes on the defense sector and the broader electronics manufacturing industry, especially concerning PCB manufacturing. With half of TTM’s business tied to defense, Tom discusses the potential opportunities and challenges arising from government initiatives, tariffs, and supply chain complexities.
Federal Electronics Continues Tradition of Giving Back Through McAuley Ministries’ Lunch on Us Program
04/21/2025 | Federal ElectronicsFederal Electronics, a leader in providing advanced electronic manufacturing services, is proud to give back to the local community through its ongoing support of McAuley Ministries.
Wiring the World Together: IPC and WHMA Unveil Global Wire Harness Competitions and Championship
04/21/2025 | IPCIPC, in collaboration with the Wiring Harness Manufacturer's Association (WHMA), has organized the first-ever World Wire Harness Competitions and Championship.