1mm-Thin Polymer Aluminum Electrolytics Provides High Ripple Current and Capacitance
March 9, 2020 | Cornell Dubilier Electronics, Inc.Estimated reading time: 1 minute

The new PPC Series of ultra-thin polymer aluminum electrolytic capacitors from Cornell Dubilier represents a totally new capacitor form factor. Designed specifically for applications requiring high ripple current and the thinnest possible profiles, type PPC opens up new product design options. In addition to being just 1 mm thin, the PPC uses versatile packaging technology that makes it possible for capacitors to be formed into custom shapes and sizes to accommodate available space.
“A single PPC capacitor offers capacitance and ripple current equivalent to dozens of SMT capacitors or a bulky cylindrical device,” said Mario DiPietro, Product Manager at Cornell Dubilier. As an example, the company claims that a single PPC capacitor is equivalent to a parallel bank of 50 or more polymer tantalum capacitors and occupies one fourth the height. Also, circuit reliability is improved by using a single component versus an entire array of SMT capacitors.
Custom values are available within a capacitance range of 8,000 µF to 20,000 µF, with working voltages ranging from 6.3 to 24 WVDC. The company plans to extend the series to higher operating voltages later in the year. Operating life is 2,000 hours @ 125° C.
The PPC is rated for 10 g peak for vibration and withstands shocks up to 100 g’s (MIL-STD-202, Method 213, Condition I). With flat tin-plated copper terminations, it is possible to mount the device off-board or directly to a PCB. Mounting is by means of 3M double-sided VHB tapeTM, to ensure that the entire capacitor surface is kept rigid.
Developed by Cornell Dubilier, the PPC is the latest leading-edge capacitor development by the company. These designs have been responsive to market demands for capacitors that provide higher performance while breaking away from traditional cylindrical form factors.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.