Showa Denko, AIST, NEDO and ADMAT Prove AI Speeds up Development of Flexible Transparent Film
April 13, 2020 | ACN NewswireEstimated reading time: 2 minutes

Showa Denko, National Institute of Advanced Industrial Science and Technology, New Energy and Industrial Technology Development Organization and Research Association of High-Throughput Design and Development for Advanced Functional Materials (ADMAT) have cooperatively proved that introduction of artificial intelligence (AI) into the process to develop flexible transparent film can reduce the numbers of times of experiment to produce film that satisfies required properties to one-twenty-fifth (1/25) or less of those conventional development methods require.
This development work has been subcontracted by NEDO's "Ultra High-Throughput Design and Prototyping Technology for Ultra Advanced Materials Development Project" (Ultra-Ultra PJ) to the consortium. By fully utilizing AI and multiscale simulation, Ultra-Ultra PJ aims to reduce substantially the numbers of times of experiment and development period required for the development of flexible transparent film from those conventional ways of material development require.
Researchers of SDK, AIST and ADMAT have been conducting AI-based searches for polymers that satisfy properties required for designing of flexible transparent film, which is essential for development of mobile devices. As the first step of this research, skilled researchers produced 27 types of films. Then researchers incorporated chemical information including molecular structures and mole ratios into explanatory variables with a special method named Extended Connectivity Circular Fingerprints (ECFP4), and chose converted transmissivity, braking stress and stretch as objective variables. These three objective variables have trade-off relations and are incompatible among them. Then, researchers made the AI learn actual values of these variables.
Following these steps, researchers prepared data including comprehensively dispersed explanatory variables, made the AI learn concept of the deviation value and estimate several combinations of materials for films that would maximize the three objective variables with the same ratio. Then researchers manufactured three types of films based on the recommendation AI made. Concurrently, as a comparative experiment, the skilled researchers who prepared the 27 sample films at the first step also made 25 types of films based on their own knowledge and experience. Next, we compared properties of the three types of films based on combination of materials recommended by the AI and 25 types of films prepared by the skilled researchers who made the 27 types of films in the first step of the research.
As a result, physical properties of all of the three types of films made from combinations of raw materials recommended by the AI showed superiority over those of the 25 types of films made by the skilled researchers. We obtained films with physical properties superior to those developed by skilled researchers through one-twenty-fifth times of experiments or less compared to the development process conducted by the skilled researchers. Thus, we proved that we can substantially shorten the period of development of flexible transparent films by utilizing AI, and that it is possible for us to develop films with physical properties superior to those of films made by researches based on their knowledge and experience.
Hereafter, we will improve this technology further, and develop a system in which the AI can suggest ratios of combinations of raw materials that can produce target products with even better physical properties while satisfying required characteristics. Today, we also announced the detail of this development work on the Website reporting results of the Ultra High-Throughput Design and Prototyping Technology for Ultra Advanced Materials Development Project (Ultra-Ultra PJ).
Suggested Items
DuPont Announces Additional Directors for the Planned Independent Electronics Company
04/18/2025 | DuPontDuPont announced that Karin De Bondt and Anne Noonan will become members of the future board of directors for the independent Electronics public company that will be created following its intended spin-off from DuPont, which is targeted for November 1, 2025.
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.
YINCAE to Showcase Cutting-Edge Solutions at SEMICON Southeast Asia 2025
04/16/2025 | YINCAEYINCAE Advanced Materials, a leading provider of innovative solutions for the semiconductor and microelectronics industries, is proud to announce its participation in SEMICON Southeast Asia 2025.
Improve Your Process Reliability: Axxon-Mycronic and HumiSeal to Host Conformal Coating Workshop in Guadalajara
04/15/2025 | Axxon-MycronicAxxon-Mycronic, a leading, global supplier of innovative and production-ready, dispensing and conformal coating systems, in collaboration with HumiSeal, a global expert in protective coating materials, is excited to announce a Conformal Coating Workshop taking place on May 8, 2025 in Guadalajara, Mexico.
Real Time with... IPC APEX EXPO 2025: Exploring LCP Materials with Matrix Electronics
04/15/2025 | Real Time with...IPC APEX EXPONolan Johnson introduces Robert Berg from Matrix Electronics, highlighting the company's focus on high-speed, low-loss flexible materials, especially LCP materials. LCP (liquid crystal polymer) is a thermal plastic with unique properties that make it ideal for advanced PCB applications. Despite processing challenges, its stability and FDA approval for medical use drive interest in aerospace and medical markets.