Thinfilm Completes First Solid-State Lithium Batteries on Steel Substrates
July 10, 2020 | GlobeNewswireEstimated reading time: 2 minutes
Thin Film Electronics ASA, a developer of ultrathin, flexible, and safe energy storage solutions for wearable devices and connected sensors, today announced attainment of a major milestone in the development of its solid-state lithium battery (SSLB) technology: the successful fabrication of functional batteries, on Thinfilm's stainless steel substrates, in its San Jose, California manufacturing facility.
Initial characterization testing has demonstrated expected energy densities, thereby enabling differentiated product performance compared to alternatives. Following the completion of this milestone, the Company announced plans to accelerate the transfer of the remaining essential tool from its process technology development partner to Thinfilm's San Jose facility in order to speed development cycle times and guard against potential delays related to the ongoing pandemic.
To successfully produce SSLBs on Thinfilm stainless steel substrates, Thinfilm's technical team integrated multiple proprietary manufacturing processes despite processing delays at the partner location due to tightening operational protocols associated with the COVID-19 pandemic. Electrical test results indicate that the Company is on track to deliver differentiated batteries with superior performance characteristics compared to competitors, including rechargeable lithium-ion pouch and coin cells widely used in target markets.
Thinfilm's proprietary, production-proven steel substrate technology is a critical enabler for the scalable production of SSLB products with milliamp-hour-class energy capacities. The favorable mechanical and thermal properties of ultrathin steel – together with Thinfilm's proprietary encapsulation technology – enable the production of larger batteries with superior volumetric energy densities compared to alternatives. Furthermore, the mechanical flexibility of steel enables Thinfilm's highly scalable, roll-based production process that cannot be replicated by competitors dependent on rigid silicon substrates.
In support of the Company's next phase of technology development, the Company is accelerating existing plans to transfer ownership of remaining process equipment, responsible for a key manufacturing step, to control development of proprietary intellectual property and increase flexibility in the scheduling and operation of the complete equipment set. Furthermore, Thinfilm's technical team has been augmented by recent key hires in battery technology, process integration, packaging, and equipment engineering.
Following this milestone, Thinfilm's development priorities now shift to the delivery of customer evaluation samples to a range of prospects and partners in the wearable device and connected sensor markets, in order for them to validate key performance characteristics of Thinfilm SSLB technology.
Based on positive engagements with leading manufacturers of wearable devices and connected sensors, the Company has expanded its potential market to include applications with forecasted annual volumes totaling more than one billion units by 2025. As Thinfilm has continued to validate applications for its differentiated microbattery products, the Company has identified specific market demand in medical wearables and hearables applications for improved energy density and extended cycling. Discussions with leading OEMs have validated demand for the advantages of Thinfilm SSLB technology by emphasizing a desire for smaller batteries, higher energy densities, customized form factors, and longer lifetimes compared to competing rechargeable options. Furthermore, to streamline the integration of Thinfilm SSLBs in next-generation applications within existing markets, the Company plans to partner with leading providers of wireless charging and energy harvesting technology to leverage the superior cycling performance of Thinfilm products.
"We are pleased to deliver on another important milestone by producing our first complete solid-state lithium batteries on stainless steel substrates," said Kevin Barber, CEO of Thinfilm. "With more than one billion units of market opportunity in targeted segments, Thinfilm looks forward to delivering premium microbattery products that minimize battery size and extend battery life for thinner, more comfortable wearable devices and connected sensors."
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
High Density Packaging User Group Announces ASKPCB Membership
11/03/2025 | HDP User GroupHigh Density Packaging User Group (HDP) is pleased to announce that the Aoshikang Technology (Hong Kong) Co., Ltd (ASKPCB) has become a member.
Cephia Secures $4M Seed Funding to Revolutionize Multimodal Sensing with Metasurface Technology
10/31/2025 | PRNewswireCephia, a startup building products using advanced AI computational imaging technologies and silicon sensors made from advanced metamaterials, formally launched with several pilot customers and $4 million in seed venture capital funding.
KYZEN Honored with 2025 Step-by-Step Excellence Award for Its Innovative ANALYST² Process Control System
10/31/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, is proud to announce that its ANALYST² Process Control System has won a 2025 Step-by-Step Excellence Award (SbSEA).
LPKF Delivers Key Strategic Technology to Fraunhofer's Glass Panel Technology Group
10/29/2025 | LPKFLPKF Laser & Electronics SE is one of the initiators of the Glass Panel Technology Group (GPTG), a consortium encompassing the entire process chain for advanced semiconductor packaging with glass substrates.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.