-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Real Time with… SMTAI 2020: Technical Conference Review
October 6, 2020 | Real Time with...SMTAIEstimated reading time: 16 minutes
Yoshinori Ejiri, Hitachi Chemical Ltd.
#154: Cu Paste for Molded Interconnect Devices Low-Temperature Metallization, Nanomaterials, Molded Interconnect Devices (MIDs), 2D Substrate, 3D Substrate
Ejiri works in R&D, downsizing and reducing the weight of electronic components by using the molded interconnect device (MID) process. The MID process has become increasingly important over the past few years. MID has been introduced as an important and accurate method of developing 3D electronic parts.
This work is concerned with Cu paste for MID, and he explained the development status of Cu paste, along with its low-temperature curing. To allow the use of thermoplastic as the base materials—that is PET, polycarbonate, polypropylene, and liquid crystal polymers—Ejiri developed a low-temperature solder paste and a coating material to increase adhesion. To increase the density of the Cu paste using printing, he explained their use of aerosol jet printing that allows geometries smaller than 140 microns while maintaining thickness to permit a lower resistance of the traces.
Figure 5: New process.
Figure 6: Cu wiring on 3D material (LCP).
Glenn Farris, Universal Instruments Corporation
#553: Building a Better, Brighter, LED Headlamp With Top-Side Alignment
Farris presented an engaging talk on the emerging and exciting trend in the automotive industry: the adoption of advanced LED headlamp lighting systems. These systems drive challenging placement requirements for LED packages. In this presentation, he showed a review of these unique challenges and discussed a novel approach to high-accuracy placement of LED packages enabling a scalable production solution: the proprietary top-side assembly placement (TAP) process.
Some of the challenges include:
- Automotive LED headlamps require precise alignment of LED emitting feature(s)
- Requires precise placement to assembly features (tooling holes) and to other LEDs under SMT process conditions
- LED position within its packaging does not meet assembly performance criteria X,Y, and Theta
- Standard SMT assembly is based on lead to pad, not a device top-side feature
After the TAP process is presented in detail (and how it addresses these challenges), then he presented a case study where they implemented TAP for a high-accuracy LED headlamp applications, including a thorough analysis of the results before and after each step.
Figure 7: Introduction to TAP.
The challenge with this type of assembly is that the LED must be precisely aligned with its lens, but the device is aligned to the package leads. The TAP process corrects this type of challenge.
Optical parts placement objectives include:
- Achieve LED placement accuracy within ±25 micron accuracy post-reflow
- Use of two drill holes on each circuit for alignment reference
- Placement accuracy measured from a reference hole on each circuit
- Pick-and-place of typical SMT devices for LEDs to mimic the process
- Baseline accuracy
- LED placement accuracy on a glass plate
- LED placement accuracy verification on panel
- Dry assembly no-wet process
- Adhesive and solder paste pre- and post-reflow
- Solder paste printing and inspection
- Low-temperature cure adhesive dispensing
- AOI for solder print characterization
- Pick-and-place
- Reflow profile setup
- X-ray for void inspection
- AOI accuracy measurement
- Cross-section test
The case study showed the alignment reliability, as well as measurements of the soldering quality.
Figure 8: The TAP process flow utilizing an Inspection station to measure device to package.
Paul Wang, Ph.D., Mitac International Corporation
#554: Contact Interconnect Challenges and Resolution, Part 2: Cable and Connector Contact Interconnect Integrity in Enterprise Server for DC Application Contact interconnect, De-Assert, PSU, Contact Reliability, Contact Impedance, Mating and Un-Mating Force
This article was the second part of a series of studies on the new generation of electronic contact challenges and component interconnects technology for high-end computer products. These products include computer server and data storage for cloud computing applications at the data center, as well as core routers for service providers, edge and branch routers for enterprise networking companies, and small switch and wireless router for commercial and small and home office. All these cloud computing products require high data speed in terabytes per second and high signal integrity for the massive mobile users and IoT application whenever and wherever they wish to connect.
To achieve such mobility and signal integrity, the major focus is to see electrical interconnections between the CPU/GPU and component and contact interconnect between PSU and MB header in the system. Due to the large number of edge-card connections such as DIMM, PCIe, etc. are designed into modern computer systems, in part one of the study, a new generation of dual-contact interconnect methodology, component level contact configuration, and interconnect reliability were assessed.
Figure 9: Dual-contact interconnection and the importance of a new plating process.Page 2 of 7
Suggested Items
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Hands-On Demos Now Available for Apollo Seiko’s EF and AF Selective Soldering Lines
06/30/2025 | Apollo SeikoApollo Seiko, a leading innovator in soldering technology, is excited to spotlight its expanded lineup of EF and AF Series Selective Soldering Systems, now available for live demonstrations in its newly dedicated demo room.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Fresh PCB Concepts: Assembly Challenges with Micro Components and Standard Solder Mask Practices
06/26/2025 | Team NCAB -- Column: Fresh PCB ConceptsMicro components have redefined what is possible in PCB design. With package sizes like 01005 and 0201 becoming more common in high-density layouts, designers are now expected to pack more performance into smaller spaces than ever before. While these advancements support miniaturization and functionality, they introduce new assembly challenges, particularly with traditional solder mask and legend application processes.
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.