Johanson Technology Collaborates with Semtech to Develop IPDs
November 11, 2020 | Johanson TechnologyEstimated reading time: 2 minutes
For the next generation of low-cost, battery operated, wireless IoT products, the design goal is to provide exceptional RF signal range and stability, while also reducing power consumption, in a miniaturized package. As a result, leading RF chipset and component manufacturers are increasingly fine-tuning and improving their products to do just that.
According to Semtech’s web site, LoRa® and LoRaWAN® are already the “de facto technology for Internet of Things (IoT) networks worldwide” and will provide long-range connectivity for a variety of IoT applications including next generation “smart” everything – cities, homes, buildings, agriculture, metering, supply chain and logistics, and others.
To accomplish this PCB effective-area reduction task, leading chipset manufacturers like Semtech create reference designs – technical blueprints of a system – that third parties can adapt and modify as required for their products’ applications.
The reference design serves as proof of the platform concept and is usually targeted for specific uses. The goal is to fast track products to market by using Johanson’s front-end solutions, thereby reducing risk in the OEM’s integration project.
“The starting point is the chipset, but the chipset requires specific RF circuitry to connect to the antenna,” explains Manuel Carmona of Johanson Technology, a leader in high frequency ceramic components including chip antennas, integrated filters/baluns, High Q capacitors and EMI chip filters.
For the LoRa® platform, specifically, the ability to integrate all the RF components into a much smaller, low profile package would only increase the attractiveness of the chipset for miniaturized, battery powered IoT products. Without this option, OEM’s would have to design the entire capacitor/inductor scheme and mount many separate components onto the printed circuit board.
“OEMs now have the option to utilize the integrated solution as opposed to the Inductor and Capacitor discrete solution. Using a Johanson Integrated Passive Device or “IPD” makes the final PCB size smaller and simpler,” explains Carmona. “Also, any changes in the geometry of the layout can affect the output performance, battery life and signal range.”
In this case, the RF circuitry required is used to convert the signal from differential to single-ended in a specific impedance ratio using an impedance matching network and a balun. Most chipsets require this type of conversion due to the differential, two pin input/output configuration to connect with the single-ended antenna.
“For many chipsets, the output straight out of the chipset is usually not matched to 50 ohms, which requires one to have an impedance matching network that must be designed in order to avoid loss of power signal, reduced battery life, and decreased signal range,” says Carmona.
To meet the requirements, Johanson Technology collaborated with Semtech to develop an IPD that serves as an Impedance-Matched-Balun-Filter.
Manufactured using Low Temperature Cofired Ceramic (LTCC) technology that allows the passive components to be layered “3-dimensionally,” IPDs deliver the same functionality as 10-40 individual RF components. With this approach, the entire front-end between the chipset and the antenna is manufactured in a single, ultra-low profile package that is less than 40% the total size of the same circuit comprised of discrete components.
With this device, which combines an impedance matching network, balun, and a filter, the entire front-end RF circuitry is reduced to a single EIA 0805 (2.0mm x 1.25mm) SMT component.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Nordson Reports Q3 Fiscal 2025 Results and Updates Full Year Guidance
08/21/2025 | BUSINESS WIRENordson Corporation reported results for the fiscal third quarter ended July 31, 2025. Sales were $742 million compared to the prior year’s third quarter sales of $662 million.
Haylo Labs Acquires Plessey Semiconductors
08/20/2025 | Haylo LabsHaylo Labs has acquired Plessey Semiconductors, the UK’s leading innovator in microLED display technology.
SoftBank Group and Intel Corporation Sign $2B Investment Agreement
08/19/2025 | Intel CorporationSoftBank Group Corp. and Intel Corporation today announced their signing of a definitive securities purchase agreement, under which SoftBank will make a $2 billion investment in Intel common stock.
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.
A.R.T. Ltd. Nominated in Four Categories at 2025 Instrumentation and Electronics Industry Awards
08/11/2025 | A.R.T. Ltd.Advanced Rework Technology Ltd. (A.R.T. Ltd.), a leading provider of electronics training and consultancy, has been shortlisted in four categories at the 2025 Instrumentation and Electronics Industry Awards, including Industry Personality, Academic Support, Rising Star, and Best Customer Service.