Stretchable Micro-Supercapacitors to Self-Power Wearable Devices
December 10, 2020 | Pennsylvania State UniversityEstimated reading time: 3 minutes

A stretchable system that can harvest energy from human breathing and motion for use in wearable health-monitoring devices may be possible, according to an international team of researchers, led by Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in Penn State's Department of Engineering Science and Mechanics.
The research team, with members from Penn State and Minjiang University and Nanjing University, both in China, recently published its results in Nano Energy.
According to Cheng, current versions of batteries and supercapacitors powering wearable and stretchable health-monitoring and diagnostic devices have many shortcomings, including low energy density and limited stretchability.
“This is something quite different than what we have worked on before, but it is a vital part of the equation,” Cheng said, noting that his research group and collaborators tend to focus on developing the sensors in wearable devices. “While working on gas sensors and other wearable devices, we always need to combine these devices with a battery for powering. Using micro-supercapacitors gives us the ability to self-power the sensor without the need for a battery.”
An alternative to batteries, micro-supercapacitors are energy storage devices that can complement or replace lithium-ion batteries in wearable devices. Micro-supercapacitors have a small footprint, high power density, and the ability to charge and discharge quickly. However, according to Cheng, when fabricated for wearable devices, conventional micro-supercapacitors have a “sandwich-like” stacked geometry that displays poor flexibility, long ion diffusion distances and a complex integration process when combined with wearable electronics.
This led Cheng and his team to explore alternative device architectures and integration processes to advance the use of micro-supercapacitors in wearable devices. They found that arranging micro-supercapacitor cells in a serpentine, island-bridge layout allows the configuration to stretch and bend at the bridges, while reducing deformation of the micro-supercapacitors — the islands. When combined, the structure becomes what the researchers refer to as "micro-supercapacitors arrays."
“By using an island-bridge design when connecting cells, the micro-supercapacitor arrays displayed increased stretchability and allowed for adjustable voltage outputs,” Cheng said. “This allows the system to be reversibly stretched up to 100%.”
By using non-layered, ultrathin zinc-phosphorus nanosheets and 3D laser-induced graphene foam — a highly porous, self-heating nanomaterial — to construct the island-bridge design of the cells, Cheng and his team saw drastic improvements in electric conductivity and the number of absorbed charged ions. This proved that these micro-supercapacitor arrays can charge and discharge efficiently and store the energy needed to power a wearable device.
The researchers also integrated the system with a triboelectric nanogenerator, an emerging technology that converts mechanical movement to electrical energy. This combination created a self-powered system.
“When we have this wireless charging module that’s based on the triboelectric nanogenerator, we can harvest energy based on motion, such as bending your elbow or breathing and speaking,” Cheng said. “We are able to use these everyday human motions to charge the micro-supercapacitors.”
By combining this integrated system with a graphene-based strain sensor, the energy-storing micro-supercapacitor arrays — charged by the triboelectric nanogenerators — are able to power the sensor, Cheng said, showing the potential for this system to power wearable, stretchable devices.
Other researchers on this project were Cheng Zeng, assistant professor; Zhixiang Peng, research assistant; Chao Xing, associate professor; Huaming Chen, associate professor; Chunlei Huang, assistant professor, and Jun Wang, professor, all at Minjiang University; Bingwen Zhang, assistant professor at the Fujian Provincial Key Laboratory of Functional Marine Sensing Materials at Minjiang University; and Shaolong Tang, professor of physics, Nanjing University.
The National Natural Science Foundation of China; the Educational Commission of Fujian Province for Youths; the U.S. National Science Foundation; the National Heart, Lung, and Blood Institute of the U.S. National Institutes of Health supported this work.
Suggested Items
Lam Research Donates Leading-Edge Etch System to Accelerate Nanofabrication R&D at UC Berkeley
04/17/2025 | PRNewswireLam Research Corp. announced the donation of its innovative multi-chamber semiconductor etching system to the Marvell Nanofabrication Laboratory at the University of California, Berkeley to advance research and development (R&D) for next-generation chip technologies.
New High Power 3D AXI for Power Electronics from Test Research, Inc.
04/17/2025 | TRITest Research, Inc. (TRI), a leading provider of Test and Inspection solutions for the electronics manufacturing industry, proudly announces the launch of the 3D AXI TR7600HP system. Designed for power semiconductor inspection, the TR7600HP enhances accuracy and efficiency in detecting defects in components such as IGBTs, MOSFETs, SiC inverters, and Paladin Connectors.
IPC APEX EXPO 2025 Review: The New Normal Looks Like the Old Normal
04/16/2025 | Nolan Johnson, SMT007 MagazineAt IPC APEX EXPO, my days are filled with either talking or listening from sunup to sundown. I get to answer questions of some of the brightest minds in the business, while also listening and synthesizing what they’re sharing with me about the current and future state of the industry. Here are five observations based on the conversations.
Smart and Compact Sensors with Edge-AI
04/16/2025 | FraunhoferA newly launched interdisciplinary research project involving universities of Brandenburg and research institutions is developing new technological approaches for better and more effective integration of artificial intelligence at the edges of IT networks, so-called “edges”.
Nortech Expands Fiber Optic Capabilities to Include MT Connectors, Strengthening Aerospace and Defense Solutions
04/16/2025 | BUSINESS WIRENortech Systems, a trusted leader in innovative connectivity solutions, announced an exciting expansion in its fiber optic capabilities with the integration of MT connectors. MT connectors, known for their ability to support multiple fiber terminations in a compact form factor, are an ideal choice for applications requiring robust data transmission and reliability.