Supercomputers Advance Longer-Lasting, Faster-Charging Batteries
February 3, 2021 | UC San DiegoEstimated reading time: 1 minute
In an effort to curb the rise in overall carbon vehicle emissions, the state of California recently announced a plan to ban new sales of gasoline-powered vehicles in less than 15 years – if the current governor’s order holds strong.
Now, thanks to supercomputers funded by the National Science Foundation such as Comet at the San Diego Supercomputer Center (SDSC) at UC San Diego and Stampede2 at the Texas Advanced Computing Center (TACC), the research community has been making progress on developing more reliable and efficient electric cars and light trucks as well as other products by focusing on the batteries that power them.
Three such university teams that recently were given allocations on these supercomputers include researchers from UC San Diego, Washington University in Saint Louis, and Washington State University.
“We have been working on making lithium-ion batteries longer lasting and faster charging for many years,” said Shyue Ping Ong, associate professor of nanoengineering at UC San Diego. “Comet was crucial for performing the calculations to elucidate the unique lithium insertion and diffusion mechanisms responsible for the high-rate capability in a new anode material we are developing.”
This new Li3V2O5 anode, which is a safer alternative to the typical graphite anode found in today’s lithium-ion batteries, was the focus of Ong’s recent publication in the journal Nature. The study was co-authored by UC San Diego’s Sustainable Power and Energy Director Ping Liu, who explained that this new anode approach can be cycled for more than 6,000 times with negligible capacity decay, and can charge and discharge energy rapidly, delivering over 40 percent of its capacity in 20 seconds.
This means that future lithium-ion batteries could provide greater than 70 percent more energy than current ones. Specifically, the anode proposed and studied by Ong and Liu is known as a disordered rocksalt anode.
“This Comet-enabled computational discovery points the way to other anode materials operating under the same mechanism,” said Ong. “Access to high-performance computing resources obviates the need for my group to buy and maintain our own supercomputers so that we can focus on the science.”
Read the original article, here.
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.