GBT Commences Research Project to Enhance Nanometer ICs Physical Verification Process
February 9, 2021 | Globe NewswireEstimated reading time: 3 minutes
GBT Technologies Inc., started a research project, internal name VeriSpeed, to develop new system and methods to enhance nanometer Integrated Circuits physical verification process.
A typical microchip design process involves few types of design’s verifications and validation. A design verification is the end-phase process to ensure that the integrated circuit works as planned. This process typically consumes vast amount of the total time spent on the microchip design. As microchips become more complex and advanced they include many more transistors and functions, all of which must be carefully tested and verified. A typical IC’s verification stages are functional design verification, which tests and validates the IC’s functionalities, physical design and verification, which checks the IC layout geometrical and electrical rules, packaging, and manufacturing tests.
During the physical design process a computer program is processing the microchip database, which is a huge size data. Typical processing of an advanced nanometer IC data, preparing it for physical verification, is a major time-consuming process. During this process the IC’s data is read and the program learns about the geometric shapes, which is called the mask layout. A set of mathematical algorithms then process this data to verify that all geometrical, electrical and DFM (Design For manufacturing) rules are met. The database engine is a key factor to the entire process performance.
VeriSpeed research project introduces a new approach to this essential element in this process, the IC’s data reading. By applying intelligent algorithms, the program will read the huge data according to a specific algorithm flow substantially speeding the entire verification process of nanometer and other Integrated Circuit’s layout Designs thus significantly impacting the global project’s design time cycle and manufacturing efficiency. The project aims to accelerate the entire IC’s verification process to enable reduction of total Integrated Circuit design time. This new database engine approach is targeted to work with GBT’s multiplanar methods as presented in the recent granted patent.
“We are seeking to introduce an intelligent key factor within the IC physical design and validation process by addressing probably the most significant part of it, the database processing. An efficient database engine is a key factor for speed and high performance of the entire physical verification process including its three main aspects. The DRC, Design Rules Check – Geometrical Rules, LVS - Layout Versus Schematic, the electrical rules, and DFM - Design for Manufacturing rules.” stated Danny Rittman the Company’s CTO
Based on advanced mathematical algorithm and deep learning the project will explore breakthrough approach and method for a new database engine that rapidly access to any specific area of the Integrated Circuit data. It is contemplated that the database engine will perform an initial analysis of the IC data to determine area’s priority for processing. The data then will be processed according to their density and complexity levels. The layout regions will be then processed in a fully hierarchical manner according to their internal indexing and priority weight.
In addition, unlike typical existing practice, it is expected that the proprietary mathematical algorithm will verify geometrical shapes in specific innovative method by split-and-merge segments to achieve higher speed. A neural network-based algorithm will validate the heuristic’s results to ensure on-track process. One of the main advantages of this system will be the early data process as the design moves forward. As the IC designer starts his/hers block design the system will learn the block’s data as the progresses. The database will be built incrementally over time and further shortened the final block physical verification process. The system will be working with GBT’s recent multiplanar 3D microchip methods as described in its patent.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Analog Devices Launches ADI Power Studio™ and New Web-Based Tools
10/14/2025 | Analog Devices, Inc.Analog Devices, Inc., a global semiconductor leader, announced the launch of ADI Power Studio, a comprehensive family of products that offers advanced modeling, component recommendations and efficiency analysis with simulation. In addition, ADI is introducing early versions of two new web-based tools with a modernized user experience under the Power Studio umbrella:
Cadence Giving Foundation Announces Multi-Year Commitment to Expand the AI Hub at San José State University
10/13/2025 | Cadence Design Systems, Inc.The Cadence Giving Foundation today announced a multi-year commitment to expand the AI Hub at San José State University (SJSU) to equip students with the skills, hands-on training and experience needed to excel in careers in artificial intelligence (AI).
NEDME Returns October 22 — The Northwest’s Premier Design & Manufacturing Expo
10/13/2025 | NEDMEThe Northwest Electronics Design & Manufacturing Expo (NEDME) returns on Wednesday, October 22, 2025, at Wingspan Event & Conference Center, Hillsboro. The event brings together engineers, product designers, manufacturers, educators, and community partners for a full day of industry connection, learning, and networking.
Sumitomo Riko Boosts Automotive Design Efficiency 10x with Ansys AI Simulation Technology
10/13/2025 | SynopsysSumitomo Riko is implementing Ansys, part of Synopsys, Inc. AI technology to accelerate time-to-solution and improve efficiency during the design and manufacturing of automotive components.
Beyond the Board: Early Engagement Means Faster Prototyping for Defense Programs
10/14/2025 | Jesse Vaughan -- Column: Beyond the BoardIn the defense electronics sector, speed-to-market has shifted from being a commercial differentiator to a national security imperative. The ability to move from design concept to deployable system in months rather than years can provide the U.S. with important strategic advantages. Prototyping, once regarded as a costly and optional stage, has become the linchpin for accelerating program schedules while safeguarding performance, compliance, and mission reliability.