Detecting COVID-19 with a Sticker on your Skin
February 25, 2021 | University of MissouriEstimated reading time: 2 minutes
One day, a wearable, bioelectronic device could wirelessly transmit a person’s vital signs — potentially providing critical information for early detection of health issues such as COVID-19 or heart disease — to a healthcare provider, eliminating the need for an in-person visit while also saving lives.
The interest for wearable bioelectronics has grown in recent years, largely fueled by the growing demand for fitness trackers that can record workouts and monitor a person’s health — from heart rate to quality of sleep. Now, University of Missouri engineers are advancing the commercial market for wearable bioelectronics by developing a large-scale manufacturing plan for a customizable device capable of simultaneously tracking multiple vital signs such as blood pressure, heart activity and skin hydration.
“While the biosensors for these devices have already been developed, we now want to combine them to mass produce a porous patch with multiple bioelectronic components,” said Zheng Yan, an assistant professor in the College of Engineering. “The components can also be customized to fit the individual health needs of the user.”
Yan recently received a more than $500,000 grant from the National Science Foundation’s Faculty Early Career Development Program, or CAREER, to begin a plan for mass production of the low-cost device.
The grant builds on some of Yan’s previous work demonstrating a proof of concept of a small patch that works as a breathable and waterproof on-skin electronic device with passive cooling capabilities. Now, he is working to increase production of that concept device for large-scale distribution.
Yan said existing wearable devices usually consist of bioelectronics supported by a flexible, solid material — typically plastic or silicone — called a substrate. He wants to optimize the material to be soft, breathable, comfortable, lightweight and waterproof. Also, in order to mass produce the bioelectronic sensors, Yan is researching how to print them directly onto the supportive material using a method called mask-free inkjet printing.
“In the future, if we want to be able to widely implement the use of wearable biomedical devices, due to the size of production it should have a low manufacturing cost,” Yan said. “Therefore, using this grant we want to determine how to achieve continuous, scalable fabrication of such devices in an effort to keep our production costs as low as possible and transfer those cost savings to the consumer.”
The grant, “Solution based, continuous manufacturing or user friendly on skin electronics for customized health monitoring,” was awarded by the National Science Foundation (2045101).
Read the original article, here.
Suggested Items
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
Excellon Installs COBRA Hybrid Laser at Innovative Circuits
06/23/2025 | ExcellonExcellon is pleased to announce the successful installation of a second COBRA Hybrid Laser System at Innovative Circuits, located in Alpharetta, Georgia. The Excellon COBRA Hybrid Laser System uniquely combines both UV and CO₂ (IR) laser sources on a single platform—making it ideal for high-density prototype and production printed circuit boards (PCBs).
Smart Automation: The Power of Data Integration in Electronics Manufacturing
06/24/2025 | Josh Casper -- Column: Smart AutomationAs EMS companies adopt automation, machine data collection and integration are among the biggest challenges. It’s now commonplace for equipment to collect and output vast amounts of data, sometimes more than a manufacturer knows what to do with. While many OEM equipment vendors offer full-line solutions, most EMS companies still take a vendor-agnostic approach, selecting the equipment companies that best serve their needs rather than a single-vendor solution.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.
Sierra Circuits Boosts High Precision PCB Manufacturing with Schmoll Technology
06/16/2025 | Schmoll MaschinenSierra Circuits has seen increased success in production of multilayer HDI boards and high-speed signal architectures through the integration of a range of Schmoll Maschinen systems. The company’s current setup includes four MXY-6 drilling machines, two LM2 routing models, and a semi-automatic Optiflex II innerlayer punch.