Random Numbers Faster, From a Laser
March 1, 2021 | William Weir, Yale UniversityEstimated reading time: 3 minutes
To speed things up, a team of researchers has developed a compact laser that can produce these random numbers 100 times quicker than the fastest current systems. The results are published February 26 in the journal Science.
To foil would-be hackers, computer systems need to generate sequences of random numbers. Some systems use what’s known as pseudo-random numbers, which are actually complex patterns that begin with a particular number, or “seed.” They work fine for some applications, but if attackers know the seed or any part of the algorithm, they can get past the encryption. Other systems employ true randomness, often relying on such unpredictable phenomena as an atom’s radioactive decay, in which the timing of the decay is measured with a Geiger detector and then converted to random bits. These also have their drawbacks, such as low speed and high cost.
“Usually, those physical random number generators are not very fast — that’s one problem,” said Yale’s Hui Cao, the John C. Malone Professor of Applied Physics and professor of physics and of electrical engineering, who led the study. “Also, they are sequential — that is, they usually just generate one bitstream. They cannot generate many bitstreams simultaneously. And in each stream, the rate is relatively low, so that prevents it from generating a lot of random numbers very quickly.”
Cao and the research team designed a special type of semiconductor laser to generate randomness. The unpredictable properties of lasers have been used to generate random numbers before, but those systems relied on the lasers’ chaotic temporal dynamics, which were caused by introducing feedback. However, the frequency of the fluctuations is limited by the response time of the material, which in turn limits the number of random bits those systems can produce.
Cao and her collaborators tailored their laser cavity to amplify many optical modes simultaneously. These modes will interfere with each other to generate rapid intensity fluctuations, which are recorded by a fast camera. The fluctuations at different locations are then digitized to generate many random bit streams in parallel, which translate to random numbers.
Cao compared the hourglass-shaped device to a violin which is formed specifically to amplify sound and resonate with many acoustic frequencies. Similarly, the new laser cavity acts as a resonator for optical waves and amplifies many modes of light
In all of these modes, the spontaneous emissions — caused by quantum fluctuations — make the bitstreams unpredictable, creating a massively parallel, ultrafast random bit generator. The result is a system that can generate about 250 terabits, or 250,000 gigabits, of random bits per second — more than two orders of magnitude higher than the fastest current systems. It’s also energy-efficient and can be scaled up significantly.
Having demonstrated that this new physical process can be used for this purpose, Cao noted that there’s still much more to study.
“It really opens a new avenue on how to generate random numbers much faster, and we have not reached the limit yet,” she said. “As to how far it can go, I think there’s still a lot more to explore.”
The researchers will next work on making the technology ready for practical use by creating a compact chip that incorporates both the laser and photodetectors. At that point, the random numbers could be fed directly into a computer.
In addition to Yale, the work is a collaboration of researchers from Université de Lorraine in France, Nanyang Technological University in Singapore, and Trinity College Dublin in Ireland. Co-authors of the study are Kyungduk Kim, Stefan Bittner, Yongquan Zeng, Stefano Guazzotti, Ortwin Hess, and Qi Jie Wang.
Read the original article, here.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Bluepath Robotics Optimizes AMR Fleets with Inductive Charging Solution from Wiferion
10/09/2025 | WiferionIn a dynamic and highly competitive industry such as logistics, efficient and uninterrupted material flows are of crucial importance. To ensure maximum uptime for its robots, Bluepath Robotics, which specializes in autonomous mobile robots (AMR), needed a reliable and powerful power supply.
‘Create your Connections’ – Rehm at productronica 2025 in Munich
10/08/2025 | Rehm Thermal SystemsThe electronics industry is undergoing dynamic transformation: smart production lines, sustainability, artificial intelligence, and sensor technologies dominate current discussions.
Compunetics Advances PCB Manufacturing with MicroCraft’s Dual-Ink CraftPix Inkjet Printer
09/30/2025 | MicroCraftMicroCraft, a global leader in advanced PCB testing and digital inkjet printing systems, has completed the installation of its CraftPix C2K6151PT dual-ink inkjet printer at Compunetics, Inc., a premier flex and rigid printed circuit board manufacturer located just outside Pittsburgh, Pennsylvania.
BAE Systems-built Carruthers Geocorona Observatory and SWFO-L1 Spacecraft Successfully Launch
09/29/2025 | BAE SystemsBAE Systems is celebrating the successful launch of two spacecraft from Kennedy Space Center in Florida, supporting vital NASA and National Oceanic and Atmospheric Administration (NOAA) space weather missions.