Putting a Spin on Heusler Alloys
March 30, 2021 | ACN NewswireEstimated reading time: 2 minutes
A study published in the journal Science and Technology of Advanced Materials summarizes the major achievements made to-date in Heusler alloy research. "Our review article can serve as an ideal reference for researchers in magnetic materials," says Atsufumi Hirohata of the University of York, UK, who specializes in spintronics.
Spintronics, also known as spin electronics, is a field of applied physics that studies the use of electron spins, instead of their charge, to carry information in solid-state devices, with reduction in power consumption and improvements in memory and processing capabilities.
A category of materials showing great promise in this area is Heusler alloys: materials formed of one or two parts metal X, one part metal Y, and one part metal Z, each coming from a distinct part of the periodic table of elements. The interesting thing about these alloys is that individually, the metals are not magnetic, but when combined, they become magnetic.
A major advantage of Heusler alloys for spintronic devices is the ability to control their unique electrical and magnetic properties, which result directly from electron spins, by making changes to their crystalline structures. But this requires very high temperatures, which researchers want to reduce.
Over the last few decades, scientists have been working on approaches to grow Heusler alloy films at room temperature on special substrates with crystal lattices that are similar to the alloy's. The interaction between the two lattices can lead to the development of half-metallicity in the Heusler alloy, where only electrons spinning in one orientation are conducted through the material whereas those spinning in another are not.
Researchers need to be able to measure the properties of materials in order to conduct their investigations. The atomic structure of Heusler alloys can be directly observed by X-ray diffraction and indirectly measured through examining the relationship between the material's resistance to an electric current and temperature changes. Other techniques are also available for measuring their magnetic properties.
Hirohata and his colleagues are currently working on fabricating a metallic magnetic junction made of Heusler alloy films. These junctions are made from two ferromagnets separated by a thin insulator. When the insulating layer is thin enough, electrons are able to tunnel from one ferromagnet to the other. There is low resistance to electron movement as long as an external magnetic field is applied, but as soon as it is removed, the material becomes highly resistant to electron movement. "These devices are expected to replace currently used memory cells and magnetic sensors," says Hirohata. The team hopes to develop metallic magnetic junctions with much larger magnetoresistance than the current record at room temperature, realising a next-generation memory for a sustainable society.
Suggested Items
Material Selection and RF Design
04/21/2025 | Andy Shaughnessy, Design007 MagazineInnovation rarely sleeps in this industry, and the RF laminate segment offers a perfect example. RF materials have continued to evolve, providing PCB designers much more than an either/or choice. I asked materials expert Alun Morgan, technology ambassador for the Ventec International Group, to walk us through the available RF material sets and how smart material selection can ease the burden on RF designers and design engineers.
DuPont Announces Additional Directors for the Planned Independent Electronics Company
04/18/2025 | DuPontDuPont announced that Karin De Bondt and Anne Noonan will become members of the future board of directors for the independent Electronics public company that will be created following its intended spin-off from DuPont, which is targeted for November 1, 2025.
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.
YINCAE to Showcase Cutting-Edge Solutions at SEMICON Southeast Asia 2025
04/16/2025 | YINCAEYINCAE Advanced Materials, a leading provider of innovative solutions for the semiconductor and microelectronics industries, is proud to announce its participation in SEMICON Southeast Asia 2025.
Improve Your Process Reliability: Axxon-Mycronic and HumiSeal to Host Conformal Coating Workshop in Guadalajara
04/15/2025 | Axxon-MycronicAxxon-Mycronic, a leading, global supplier of innovative and production-ready, dispensing and conformal coating systems, in collaboration with HumiSeal, a global expert in protective coating materials, is excited to announce a Conformal Coating Workshop taking place on May 8, 2025 in Guadalajara, Mexico.