Researchers Harvest Energy from Radio Waves to Power Wearable Devices
April 5, 2021 | Pennsylvania State UniversityEstimated reading time: 3 minutes
From microwave ovens to Wi-Fi connections, the radio waves that permeate the environment are not just signals of energy consumed but are also sources of energy themselves. An international team of researchers, led by Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in the Penn State Department of Engineering Science and Mechanics, has developed a way to harvest energy from radio waves to power wearable devices.
According to Cheng, current energy sources for wearable health-monitoring devices have their place in powering sensor devices, but each has its setbacks. Solar power, for example, can only harvest energy when exposed to the sun. A self-powered triboelectric device can only harvest energy when the body is in motion.
“We don’t want to replace any of these current power sources,” Cheng said. “We are trying to provide additional, consistent energy.”
The researchers developed a stretchable wideband dipole antenna system capable of wirelessly transmitting data that is collected from health-monitoring sensors. The system consists of two stretchable metal antennas integrated onto conductive graphene material with a metal coating. The wideband design of the system allows it to retain its frequency functions even when stretched, bent and twisted. This system is then connected to a stretchable rectifying circuit, creating a rectified antenna, or "rectenna,” capable of converting energy from electromagnetic waves into electricity. This electricity that can be used to power wireless devices or to charge energy storage devices, such as batteries and supercapacitors.
This rectenna can convert radio, or electromagnetic, waves from the ambient environment into energy to power the sensing modules on the device, which track temperature, hydration and pulse oxygen level. Compared to other sources, less energy is produced, but the system can generate power continuously — a significant advantage, according to Cheng.
“We are utilizing the energy that already surrounds us — radio waves are everywhere, all the time,” Cheng said. “If we don’t use this energy found in the ambient environment, it is simply wasted. We can harvest this energy and rectify it into power.”
Cheng said that this technology is a building block for him and his team. Combining it with their novel wireless transmissible data device will provide a critical component that will work with the team’s existing sensor modules.
“Our next steps will be exploring miniaturized versions of these circuits and working on developing the stretchability of the rectifier,” Cheng said. “This is a platform where we can easily combine and apply this technology with other modules that we have created in the past. It is easily extended or adapted for other applications, and we plan to explore those opportunities.”
This paper is co-authored by Jia Zhu, who earned a doctoral degree in engineering science and mechanics from Penn State in 2020; Zhihui Hu, former visiting professor in engineering science and mechanics at Penn State and current associate professor at Wuhan University of Technology in China; Chaoyun Song, assistant professor in the School of Engineering and Physical Sciences at Heriot-Watt University in Scotland; Ning Yi, who earned a doctoral degree in engineering science and mechanics from Penn State in 2020; Zhaozheng Yu, who earned a master’s degree in engineering science and mechanics from Penn State in 2019; Zhendong Liu, former visiting graduate student in engineering science and mechanics at Penn State; Shangbin Liu, graduate student in engineering science and mechanics at Penn State; Mengjun Wang, associate professor in the School of Electronics and Information?Engineering at Hebei University of Technology in China; Michael Gregory Dexheimer, who earned a master’s degree in engineering science and mechanics from Penn State in 2020; and Jian Yang, professor of biomedical engineering at Penn State.
Support for this work was provided by the National Science Foundation; the National Heart, Lung, and Blood Institute of the National Institutes of Health; and Penn State.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Light-curable Solutions for Reliable Electronics in Space Applications
10/15/2025 | Virginia Hogan, DymaxDesigning electronics for space environments, particularly those in low Earth orbit (LEO), requires careful consideration of materials that can withstand extreme conditions while supporting long-term reliability. Engineers designing satellite systems, aerospace instrumentation, and high-altitude platforms face a familiar set of challenges: contamination control, mechanical stress, thermal cycling, and manufacturability.
Analog Devices Launches ADI Power Studio™ and New Web-Based Tools
10/14/2025 | Analog Devices, Inc.Analog Devices, Inc., a global semiconductor leader, announced the launch of ADI Power Studio, a comprehensive family of products that offers advanced modeling, component recommendations and efficiency analysis with simulation. In addition, ADI is introducing early versions of two new web-based tools with a modernized user experience under the Power Studio umbrella:
Elementary, Mr. Watson: High Power: When Physics Becomes Real
10/15/2025 | John Watson -- Column: Elementary, Mr. WatsonHave you ever noticed how high-speed design and signal integrity classes are always packed to standing room only, but just down the hall, the session on power electronics has plenty of empty chairs? It's not just a coincidence; it's a trend I've observed over the years as both an attendee and instructor.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Bluepath Robotics Optimizes AMR Fleets with Inductive Charging Solution from Wiferion
10/09/2025 | WiferionIn a dynamic and highly competitive industry such as logistics, efficient and uninterrupted material flows are of crucial importance. To ensure maximum uptime for its robots, Bluepath Robotics, which specializes in autonomous mobile robots (AMR), needed a reliable and powerful power supply.