Spintronics Technology Revolution Could Be Just a Hopfion Away
April 13, 2021 | Berkeley LabEstimated reading time: 3 minutes
A decade ago, the discovery of quasiparticles called magnetic skyrmions provided important new clues into how microscopic spin textures will enable spintronics, a new class of electronics that use the orientation of an electron’s spin rather than its charge to encode data.
But although scientists have made big advances in this very young field, they still don’t fully understand how to design spintronics materials that would allow for ultrasmall, ultrafast, low-power devices. Skyrmions may seem promising, but scientists have long treated skyrmions as merely 2D objects. Recent studies, however, have suggested that 2D skyrmions could actually be the genesis of a 3D spin pattern called hopfions. But no one had been able to experimentally prove that magnetic hopfions exist on the nanoscale.
Now, a team of researchers co-led by Berkeley Lab has reported in Nature Communications the first demonstration and observation of 3D hopfions emerging from skyrmions at the nanoscale (billionths of a meter) in a magnetic system. The researchers say that their discovery heralds a major step forward in realizing high-density, high-speed, low-power, yet ultrastable magnetic memory devices that exploit the intrinsic power of electron spin.
“We not only proved that complex spin textures like 3D hopfions exist – We also demonstrated how to study and therefore harness them,” said co-senior author Peter Fischer, a senior scientist in Berkeley Lab’s Materials Sciences Division who is also an adjunct professor in physics at UC Santa Cruz. “To understand how hopfions really work, we have to know how to make them and study them. This work was possible only because we have these amazing tools at Berkeley Lab and our collaborative partnerships with scientists around the world,” he said.
According to previous studies, hopfions, unlike skyrmions, don’t drift when they move along a device and are therefore excellent candidates for data technologies. Furthermore, theory collaborators in the United Kingdom had predicted that hopfions could emerge from a multilayered 2D magnetic system.
The current study is the first to put those theories to test, Fischer said.
Using nanofabrication tools at Berkeley Lab’s Molecular Foundry, Noah Kent, a Ph.D. student in physics at UC Santa Cruz and in Fischer’s group at Berkeley Lab, worked with Molecular Foundry staff to carve out magnetic nanopillars from layers of iridium, cobalt, and platinum.
The multilayered materials were prepared by UC Berkeley postdoctoral scholar Neal Reynolds under the supervision of co-senior author Frances Hellman, who holds titles of senior faculty scientist in Berkeley Lab’s Materials Sciences Division, and professor of physics and materials science and engineering at UC Berkeley. She also leads the Department of Energy’s Non-Equilibrium Magnetic Materials (NEMM) program, which supported this study.
Hopfions and skyrmions are known to co-exist in magnetic materials, but they have a characteristic spin pattern in three dimensions. So, to tell them apart, the researchers used a combination of two advanced magnetic X-ray microscopy techniques – X-PEEM (X-ray photoemission electron microscopy) at Berkeley Lab’s synchrotron user facility, the Advanced Light Source; and magnetic soft X-ray transmission microscopy (MTXM) at ALBA, a synchrotron light facility in Barcelona, Spain – to image the distinct spin patterns of hopfions and skyrmions.
To confirm their observations, the researchers then carried out detailed simulations to mimic how 2D skyrmions inside a magnetic device evolve into 3D hopfions in carefully designed multilayer structures, and how these will appear when imaged by polarized X-ray light.
“Simulations are a hugely important part of this process, enabling us to understand the experimental images and to design structures that will support hopfions, skyrmions, or other designed 3D spin structures,” Hellman said.
To understand how hopfions will ultimately function in a device, the researchers plan to employ Berkeley Lab’s unique capabilities and world-class research facilities – which Fischer describes as “essential for carrying out such interdisciplinary work” to further study the quixotic quasiparticles’ dynamical behavior.
“We have known for a long time that spin textures are almost inevitably three dimensional, even in relatively thin films, but direct imaging has been experimentally challenging,” said Hellman. “The evidence here is exciting, and it opens doors to finding and exploring even more exotic and potentially significant 3D spin structures.”
Co-authors with Fischer and Hellman include David Raftrey, Ian T.G. Campbell, Selven Virasawmy, Scott Dhuey, and Rajesh V. Chopdekar of Berkeley Lab; Aurelio Hierro-Rodriguez of the University of Oviedo, and Andrea Sorrentino, Eva Pereiro, and Salvador Ferrer of the ALBA Synchrotron, Spain.
The Advanced Light Source and Molecular Foundry are DOE Office of Science user facilities at Berkeley Lab.
This work was supported by the U.S. Department of Energy Office of Science.
Suggested Items
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.
Ventec Strengthens Commitment to Halogen-Free PCB Manufacturing in Europe
06/11/2025 | Ventec International GroupVentec International Group, the PCB materials innovator, manufacturer, supplier and one-stop shop for copper clad laminates, prepregs, as well as process consumables and PCB manufacturing equipment has established volume inventory of halogen-free FR4.1 and FR15.1 PCB materials at its European hub in Germany.