New Conductive Polymer Ink Opens For Next-Generation Printed Electronics
April 23, 2021 | Linköping UniversityEstimated reading time: 2 minutes
Researchers at Linköping University, Sweden, have developed a stable high-conductivity polymer ink. The advance paves the way for innovative printed electronics with high energy efficiency. The results have been published in Nature Communications.
Electrically conducting polymers have made possible the development of flexible and lightweight electronic components such as organic biosensors, solar cells, light-emitting diodes, transistors, and batteries.
The electrical properties of the conducting polymers can be tuned using a method known as “doping”. In this method, various dopant molecules are added to the polymer to change its properties. Depending on the dopant, the doped polymer can conduct electricity by the motion of either negatively charged electrons (an “n-type” conductor), or positively charged holes (a “p-type” conductor).
Major Advance
Today, the most commonly used conducting polymer is the p-type conductor PEDOT:PSS. PEDOT:PSS has several compelling features such as high electrical conductivity, excellent ambient stability, and most importantly, commercial availability as an aqueous dispersion.Researcher pours ink into a beaker.
However, many electronic devices require a combination of p-types and n-types to function. At the moment, there is no n-type equivalent to PEDOT:PSS.
Researchers at Linköping University, together with colleagues in the US and South Korea, have now developed a conductive n-type polymer ink, stable in air and at high temperatures. This new polymer formulation is known as BBL:PEI.
“This is a major advance that makes the next generation of printed electronic devices possible. The lack of a suitable n-type polymer has been like walking on one leg when designing functional electronic devices. We can now provide the second leg”, says Simone Fabiano, senior lecturer in the Department of Science and Technology at Linköping University.
Chi-Yuan Yang is a postdoc at Linköping University and one of the principal authors of the article published in Nature Communications. He adds:
“Everything possible with PEDOT:PSS is also possible with our new polymer. The combination of PEDOT:PSS and BBL:PEI opens new possibilities for the development of stable and efficient electronic circuits”, says Chi-Yuan Yang.
Cheap and Easy
The new n-type material comes in the form of ink with ethanol as the solvent. The ink can be deposited by simply spraying the solution onto a surface, making organic electronic devices easier and cheaper to manufacture. Conductive ink is sprayed on a surface.
Also, the ink is more eco-friendly than many other n-type organic conductors currently under development, which instead contain harmful solvents. Simone Fabiano believes that the technology is ready for routine use.
“Large-scale production is already feasible, and we are thrilled to have come so far in a relatively short time. We expect BBL:PEI to have the same impact as PEDOT:PSS. At the same time, much remains to be done to adapt the ink to various technologies, and we need to learn more about the material”, says Simone Fabiano.
The research was financed by the Knut and Alice Wallenberg Foundation, the Swedish Research Council, the Åforsk Foundation, the Olle Engkvist Foundation, Vinnova, and the strategic research area Advanced Functional Materials at Linköping University.
Read the original article, here.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Missile Strike on Ukraine Hits Flex Facility
08/22/2025 | FlexOn the morning of August 21, 2025, our facility in Mukachevo, Ukraine, was damaged during a missile strike. Our emergency protocols were executed to ensure the full evacuation of the site.
TPCA Establishes Thailand PCB Academy in Bangkok
08/22/2025 | TPCAA distinguished delegation of distinguished guests from industry, government, academia, and research in Taiwan and Thailand, including representatives from the Ministry of Higher Education, Science, Research, and Innovation (MHESI), the Board of Investment of Thailand (BOI), and the Taipei Economic and Cultural Office in Thailand (TECO), as well as professors from several Thai universities and member companies, attended the historic occasion.
SINBON Celebrates Opening of New US Manufacturing Facility
08/21/2025 | PRNewswireLeading electronics system integrator SINBON Electronics Co., Ltd. held an opening ceremony on August 18 to celebrate its new 59,000-square-foot facility in Clayton, Ohio.
Axxon-Mycronic to Showcase Advanced Coating, Dispensing, and Backend Solutions at SMTA Guadalajara 2025
08/21/2025 | Axxon-MycronicAxxon-Mycronic, a leading, global supplier of innovative and production-ready, dispensing and conformal coating systems, to announce its participation at the 2025 SMTA Guadalajara EXPO, taking place September 17-18, 2025 at the Guadalajara Expo & Tech Forum.
PEDC Call for Abstracts Deadline Extended to Aug. 31
08/20/2025 | I-Connect007 Editorial TeamThe second Pan-European Electronics Design Conference (PEDC) will take place Jan. 21-22, 2026, in Prague, Czech Republic. The call for abstracts deadline has been extended to Aug. 31. Organized jointly by the German Electronics Design and Manufacturing Association (FED) and the Global Electronics Association (formerly IPC), PEDC serves as a European platform for knowledge exchange, networking, and innovation in electronics design and development.