Touchless Temperature Made Simple
April 26, 2021 | Rice UniversityEstimated reading time: 2 minutes
Getting around during the pandemic often requires getting your temperature taken to check for COVID-19. A team of seniors at Rice’s Brown School of Engineering wants to make that practice more practical for facilities around the world.
The low-cost temperature-at-a-distance device designed at Rice’s Oshman Engineering Design Kitchen uses infrared (IR) light to read a user’s forehead without contact and give instant feedback on an LED readout. The simple device costs about $75 to produce now, but the team is working to design a production model that will cost about $40.
The team calling itself “Hot Mess” will demonstrate the device during this year’s Engineering Design Showcase, an annual event with cash prizes for the top teams. The showcase will be virtual this year, beginning at 4:30 p.m. April 29.
“Fever is such a big symptom for a lot of airborne diseases that we figured we could make something that would be applicable now, but also for other diseases and pandemics in the future,” said team member Caterina Grasso Goebel. “A lot of people use IR guns that don’t create enough distance between the person taking the screening and the person being screened.”
Of course, “simple devices” are never as simple as they seem. The students — bioengineering majors Grasso Goebel, Keaton Blazer and Diego Gonzalez, cognitive science major Kyla Barnwell, psychology major Sanjana Krishnan and sports medicine and exercise science major Michael Ngan — had to design and build not only the circuitry and software to deliver a result but also the mechanism that would allow users to set the sensor at the right height and trigger the reading from a short distance.
That involved rigging a scissor-lift mechanism that can be raised and lowered with dowels manipulated by foot. The sensor on their prototype can be raised to 5 feet, 11 inches, or lowered to 4’2?. “Our No. 1 goal for the next couple weeks is making sure it’s user-friendly enough,” Barnwell said, noting they hope to develop a shorter prototype for children or those using wheelchairs as well.
The ability to gang multiple sensors offers the opportunity to put them at various heights in an existing structure like a doorway, said Blazer, who focused on the electronics.
“All of the IR sensors out there basically do the same thing,” he said. “So one goal was to configure everything with a really low cost and adequate accuracy for the environment. We built our circuitry to process the data properly to account for ambient temperatures and all the rest.”
Working with the Rice 360? Institute for Global Health, the device incorporates components the members expect will be available in low-resource settings to make repairs more practical. Barnwell, who spent the summer of 2019 in Malawi with Rice 360?, got a sense of what is available by scouring local stores there.
“I also got to see the environments where a lot of these technologies will be implemented,” said Barnwell, who visited marketplaces, hospitals and other locations where a temperature sensor would be most useful.
The sensor is battery powered, Grasso Goebel said, to alleviate concerns over steady power supplies in developing countries.
The team’s faculty advisers are Andrea Gobin, director of invention education at Rice 360?, and Gary Woods, a professor in the practice of electrical and computer engineering, with additional mentoring by graduate student Rushika Mitbander.
Suggested Items
Material Selection and RF Design
04/21/2025 | Andy Shaughnessy, Design007 MagazineInnovation rarely sleeps in this industry, and the RF laminate segment offers a perfect example. RF materials have continued to evolve, providing PCB designers much more than an either/or choice. I asked materials expert Alun Morgan, technology ambassador for the Ventec International Group, to walk us through the available RF material sets and how smart material selection can ease the burden on RF designers and design engineers.
Real Time with... IPC APEX EXPO 2025: Aster–Enhancing Design for Effective Testing Strategies
04/18/2025 | Real Time with...IPC APEX EXPOWill Webb, technical director at Aster, stresses the importance of testability in design, emphasizing early engagement to identify testing issues. This discussion covers the integration of testing with Industry 4.0, the need for good test coverage, and adherence to industry standards. Innovations like boundary scan testing and new tools for cluster testing are introduced, highlighting advancements in optimizing testing workflows and collaboration with other tools.
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
Electronic System Design Industry Posts $4.9 Billion in Revenue in Q4 2024
04/15/2025 | SEMIElectronic System Design (ESD) industry revenue increased 11% to $4,927.3 million in the fourth quarter of 2024 from the $4440.9 million reported in the fourth quarter of 2023, the ESD Alliance, a SEMI Technology Community, announced in its latest Electronic Design Market Data (EDMD) report.
Connect the Dots: Involving Manufacturers Earlier Prevents Downstream Issues
04/17/2025 | Matt Stevenson -- Column: Connect the DotsIf you have read any of my earlier columns, you know I am passionate about helping designers design for the reality of manufacturing. Designing for manufacturability (DFM) is a team sport. DFM is a design process that looks forward to the manufacturing process and integrates with it so that manufacturing requirements and capabilities can be accurately reflected in the design work.