Printable Circuits Bring Low-cost, High-performance Wearables a Step Closer
May 13, 2021 | Imperial College LondonEstimated reading time: 2 minutes
Researchers have developed printable inks that enable high-performance inkjet-printed electronic circuits, providing a pathway to wearable devices.
The advantage of producing electronics based on inks is that they are flexible, allowing them to be used in wearable devices like health monitors, body warmers, radio frequency antennas, and electronic textile displays.
The circuits produced by the new electronic inks, which are based on two-dimensional materials, performed as well as commercial organic semiconductors, which are used for applications including next-generation LEDs and solar panels.
The new inks also showed a surprising long-term stability in air, which is currently still challenging to achieve in printed electronics.
The new inks, created by a team led by researchers from Imperial College London and Politecnico di Milano in Italy, are described today in the journal Advanced Electronic Materials.
Significant step
Inks that can be printed can also been easily mass-produced, reducing their cost. However, current printable electronics tends to be unstable in air and lack the high performance of organic semiconductors, which could show electrical properties similar to those achieved in standard silicon technologies such as microchips.
The printable semiconducting inks developed by the team shows superior electrical properties – such as high electron mobility – and air stability, while preserving the versatility of the printing technology. This is significant step towards low-cost high-performance printed and wearable electronics.
The inks are based on novel two-dimensional (2D) materials, including single-layer molybdenum disulphide (MoS2). These are known as graphene-like materials, because they are made up of sheets that are only a single atom thick, like the atomically thin carbon sheet graphene.
Mass manufacture
Lead researcher Dr Felice Torrisi, from the Department of Chemistry at Imperial, said: “Our new inks represent an important step in creating large-scale printed electronics using novel 2D materials.
“Being able to produce thin, flexible circuits with inkjet printers allows electronics to be printed on a wide range of surfaces, including silicon, plastics, and even textiles. This method also allows for mass production with minimal losses, giving these electronics the scalability to be mass manufactured.”
Illustration of the printed circuit
Researchers have looked into using several materials as printable inks, but to rival classic silicon chips and be useful for wearable devices, inks need to be low-power, low-cost and stable long term. Other inks using organic materials have been produced but are unstable in ambient conditions, such as normal temperatures and moisture levels. This means they degrade in less than 100 hours.
The new 2D-material-based inks can cope with normal temperature and moisture ranges over the long term, making them much more suitable for everyday use as wearable electronics.
Cheap and widely available wearable devices
The team have so far shown they can print semiconductors – materials that can both conduct and insulate electric charge, depending on the local properties and conditions of the material. Semiconductors can be tuned to create important components of electrical devices, including transistors and diodes.
The new printed semiconductors are of one type – ‘n-type’ – where electrons are responsible for the current in the electronic devices. The team are now investigating ‘p-type’ printed semiconductors, where the electrons’ counterparts – termed holes – are responsible for the electric current.
Co-author Professor Roman Sordan, from Politecnico di Milano, said: “Our result represents a first step in the integration of inkjet printed n-type 2D transistors and p-type organic transistors into complementary logic gates which are the backbone of modern digital electronics. We hope this brings us closer to cheap and widely available wearable devices.”
Read the original article here.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
MSU Leveraging Intel 16 and the Cadence Tool Flow for Academic Chip Tapeout
08/22/2025 | Cadence Design SystemsMorgan State University (MSU) recently received an Apple Innovation Grant, designed to support engineering schools as they develop their silicon and hardware technologies. The New Silicon Initiative (NSI) is designed to inspire and prepare students for careers in hardware engineering, computer architecture, and silicon chip design.
Avary Holding, a Subsidiary of Zhen Ding, Board Approves Huai’an Park Investment
08/22/2025 | Zhen DingZhen Ding Technology Holding Limited, a global leading PCB manufacturer, announced on behalf of its subsidiary, Avary Holding (Shenzhen) Co., Ltd., that the Board of Directors has approved the Huai’an Park investment plan.
New Episode Drop: MKS’ ESI’s Role in Optimize the Interconnect
08/21/2025 | I-Connect007In this latest episode, Casey Kruger, director of product marketing at MKS’ ESI, joins On the Line With… host Nolan Johnson to share how CO₂ laser technology delivers faster, more accurate vias in a smaller, more energy-efficient footprint.
SEL: Revolutionizing PCB Production Through MES, Partnerships, and Vision
08/21/2025 | Barry Matties, I-Connect007Two years ago, we visited Schweitzer Engineering Laboratories (SEL) to better understand its new captive greenfield PCB facility. We recently returned, this time to discuss how this bold vision has transformed the industry. Barry Matties met with John Hendrickson, engineering director, and Jessi Hall, vice president of vertical integration, to discuss the transformative capabilities of Factory Core, SEL’s custom manufacturing execution system (MES), which allows for real-time monitoring of workflow and machine performance, and has led to impressive improvements in quality and cost efficiency.
Inventing the Future: An Interview with Dr. Ed Schweitzer
08/20/2025 | Barry Matties, I-Connect007Dr. Edmund O. Schweitzer III, founder of Schweitzer Engineering Laboratories (SEL), has a corner office in the company’s world headquarters in Pullman, Washington. Forty-two years after his SEL-21—the first microprocessor-based digital protective relay—ushered in a new era of power-system protection, he has forever changed the way the world safeguards its electric grids. In this three-hour conversation, Dr. Schweitzer reveals that he remains excited to get to work each day, unpacking the “better, cheaper, faster, simpler” mantra that’s still driving SEL’s innovation, and the culture glue that keeps more than 7,000 employee-owners rowing in unison.