Researchers Take a Practical Look Beyond Short-Term Energy Storage
May 27, 2021 | NRLEstimated reading time: 1 minute

With variable renewable energy (VRE) expected to become a much larger share of the global energy mix, storage solutions are needed beyond short-duration timescales, such as standard commercial batteries, which are suitable for covering hourly differences in net load.
A Nature Energy “News & Views” article by National Renewable Energy Laboratory (NREL) research engineer Omar J. Guerra describes research needs for longer-duration and seasonal energy storage solutions. The article, titled “Beyond short-duration energy storage,” reviews important practical implications of a research article contributed by Nestor A. Sepulveda and colleagues, as well as research opportunities to develop a stronger understanding of how long-term and seasonal storage technologies can become cost-effective and grid-supportive energy solutions.
Guerra’s article draws attention to the need for new system-level models that resolve the integrated aspects of longer-duration storage options, including seasonal timescales.
Longer-duration energy storage technologies could include mechanical, such as pumped hydro; electrochemical, such as novel battery technologies; chemical, such as hydrogen; or thermal, such as molten salts. Guerra’s article describes recent studies showing how these technologies can provide grid-scale storage in the long term; however, more detailed analysis is needed to motivate industry investment and determine the complete value of upcoming technologies to the grid.
This review summarizes the research needs to arrive at more comprehensive results: better temporal representation for production cost models and capacity planning models; more integrated models showing how storage technologies behave with varying loads and levels of renewables; and better-informed experimental validation of storage technologies.
Overall, this article suggests that with higher detail and more representative modeling, the energy industry will have a more complete understanding of how long-duration storage technologies could displace carbon-intensive energy sources, provide resilience and transmission deferral benefits, and become economically viable investments.
Read the full article here.
Suggested Items
IEEE Study Leverages Silicon Photonics for Scalable and Sustainable AI Hardware
04/14/2025 | PRNewswireThe emergence of AI has profoundly transformed numerous industries. Driven by deep learning technology and Big Data, AI requires significant processing power for training its models. While the existing AI infrastructure relies on graphical processing units (GPUs), the substantial processing demands and energy expenses associated with its operation remain key challenges.
Dongguk University Researchers Advance Lithium-Ion Battery Technology with Hybrid Anode Material
04/14/2025 | PRNewswireResearchers from Dongguk University have achieved a significant breakthrough in lithium-ion battery technology by developing a novel hybrid anode material.
Foxconn Joins Hands with 30 Suppliers to Reduce Carbon Emissions by 15,000 Tons in Two Years
04/09/2025 | FoxconnHon Hai Technology Group, the world’s largest technology manufacturer and service provider, has participated in climate actions such as CA100+ and RE100 in recent years and pledged to achieve net zero emissions by 2050.
LiU and Siemens Energy Enter Into Strategic Partnership
04/01/2025 | Linköping UniversityIn order to find long-term solutions to future challenges in the energy field, Linköping University and Siemens Energy AB sign a strategic partnership agreement.
Meyer Burger, Memodo Sign Supply Agreement for Italy
03/28/2025 | Meyer BurgerMeyer Burger Technology AG and photovoltaic distributor Memodo have signed a supply agreement. The high-performance modules “Made in Germany” were manufactured at the Freiberg plant in Germany and are intended for the Italian market.