An Ecological Miracle: The Biodegradable Battery
June 16, 2021 | EMPAEstimated reading time: 3 minutes
The number of data-transmitting microdevices, for instance in packaging and transport logistics, will increase sharply in the coming years. All these devices need energy, but the amount of batteries would have a major impact on the environment. Empa researchers have developed a biodegradable mini-capacitor that can solve the problem. It consists of carbon, cellulose, glycerin and table salt. And it works reliably.
The fabrication device for the battery revolution looks quite unconspicuous: It is a modified, commercially available 3D printer, located in a room in the Empa laboratory building. But the real innovation lies within the recipe for the gelatinous inks this printer can dispense onto a surface. The mixture in question consists of cellulose nanofibers and cellulose nanocrystallites, plus carbon in the form of carbon black, graphite and activated carbon. To liquefy all this, the researchers use glycerin, water and two different types of alcohol. Plus a pinch of table salt for ionic conductivity.
To build a functioning supercapacitor from these ingredients, four layers are needed, all flowing out of the 3D printer one after the other: a flexible substrate, a conductive layer, the electrode and finally the electrolyte. The whole thing is then folded up like a sandwich, with the electrolyte in the center.
What emerges is an ecological miracle. The mini-capacitor from the lab can store electricity for hours and can already power a small digital clock. It can withstand thousands of charge and discharge cycles and years of storage, even in freezing temperatures, and is resistant to pressure and shock.
Biodegradable power supply
Best of all, though, when you no longer need it, you could toss it in the compost or simply leave it in nature. After two months, the capacitor will have disintegrated, leaving only a few visible carbon particles. The researchers have already tried this, too.
"It sounds quite simple, but it wasn't at all," says Xavier Aeby of Empa's Cellulose & Wood Materials lab. It took an extended series of tests until all the parameters were right, until all the components flowed reliably from the printer and the capacitor worked. Says Aeby: "As researchers, we don't want to just fiddle about, we also want to understand what's happening inside our materials."
Together with his supervisor, Gustav Nyström, Aeby developed and implemented the concept of a biodegradable electricity storage device. Aeby studied microsystems engineering at EPFL and came to Empa for his doctorate. Nyström and his team have been investigating functional gels based on nanocellulose for some time. The material is not only an environmentally friendly, renewable raw material, but its internal chemistry makes it extremely versatile.
"The project of a biodegradable electricity storage system has been close to my heart for a long time," Nyström says. "We applied for Empa internal funding with our project, Printed Paper Batteries, and were able to start our activities with this funding. Now we have achieved our first goal."
Application in the Internet of Things
The supercapacitor could soon become a key component for the Internet of Things, Nyström and Aeby expect. "In the future, such capacitors could be briefly charged using an electromagnetic field, for example, then they could provide power for a sensor or a microtransmitter for hours." This could be used, for instance, to check the contents of individual packages during shipping. Powering sensors in environmental monitoring or agriculture is also conceivable – there's no need to collect these batteries again, as they could be left in nature to degrade.
The number of electronic microdevices will also be increasing due to a much more widespread use of near-patient laboratory diagnostics ("point of care testing"), which is currently booming. Small test devices for use at the bedside or self-testing devices for diabetics are among them. "A disposable cellulose capacitor could also be well suited for these applications", says Gustav Nyström.
Read the original article, here.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Durapower Group, Kıvanç Enerji Forge Partnership to Explore Strategic Battery Manufacturing and Renewable Energy Collaboration in the U.S.
10/10/2025 | PRNewswireDurapower Group, a Singapore-based leader in advanced lithium-ion battery solutions, has signed a Memorandum of Understanding (MoU) with Turkish industrial group Kıvanç Enerji on October 8, 2025, in Detroit, United States (US).
Energy Tech Solution Launches 'Made in America Cell Foundry' to Accelerate Battery Development in the United States
10/06/2025 | PRNewswireEnergy Tech Solution (ETS), a South Korea-based manufacturer of battery factory equipment, announced the launch of the 'Made in America Cell Foundry' to help battery startups commercialize faster. North American energy storage innovators can reduce tariff risk, avoid costly Capex and iterate efficiently by relying on trusted contract manufacturing in Michigan.
QuantumScape, Corning Announce Agreement for Ceramic Separator Development & Commercialization
09/30/2025 | BUSINESS WIREQuantumScape Corporation, a global leader in next-generation solid-state lithium-metal battery technology, and Corning Incorporated, one of the world’s leading innovators in glass, ceramics, and materials science, announced an agreement to jointly develop ceramic separator manufacturing capabilities for QS solid-state batteries.
Sila Opens Nation’s First Automotive-Scale Silicon Anode Plant, Ushering in a New Era for U.S. Battery Manufacturing
09/23/2025 | BUSINESS WIRESila, a next-generation battery materials company, announced that it has begun operations at Sila Moses Lake, its new automotive-scale silicon anode plant in Moses Lake, Washington.
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.