Humans and Robots: Combating Fatigue With Autonomy
June 22, 2021 | Texas A&M UniversityEstimated reading time: 3 minutes
Humans and robots may be sharing some of the same goals and manufacturing spaces soon as autonomy and robot technology continue to advance. Researchers at Texas A&M University are analyzing how they can work in unison to allow for one party to step up where the other may temporarily lack.
Sarah Hopko, lead researcher and doctoral student, and Ranjana Mehta, associate professor in the Wm Michael Barnes Department of Industrial and Systems Engineering, and former graduate student Riya Khurana and Prabhakar Pagilla, professor in the J. Mike Walker Department of Mechanical Engineering, are researching the correlation between humans and autonomous assistance in manufacturing settings with large amounts of repetitive work. They hope to determine how a robot can be programmed to step in during human fatigue in a trustworthy manner.
Humans bring flexibility and a high-level of understanding of a production line at a relatively low cost. But because humans have finite physical and cognitive capacities, they become tired and make errors with demanding work tasks. Where humans may lack the capacity to continue, robots can aid in overseeing the more repetitive portions of a task, lifting heavier objects or exerting force depending on the application.
“More and more people are realizing that human-robot collaboration is a viable solution to automate productions or bring a solution to problems that pose difficult or costly roadblocks,” Hopko said.
The goal of this research is to understand how specific human factors, such as fatigue and trust, interact with each other to make sure that the design of a collaborative robot considers the operator’s behavior and needs so that all bases are covered.
“We don’t want the operator to instill a false sense of safety because of their fatigued state and over-rely on the increased assistance of the robot. We also don’t want the operator to under-use robotic assistance when otherwise appropriate,” Hopko said. “Collaborative robots are, to some extent, the operator’s teammate.”
When collaborating with a teammate at work, identifying engagement or levels of fatigue can all be done either through perception or a simple conversation. You can then figure out how best to help your teammate based on the information you have gathered. Hopko says the goal is for human-robot interaction to be similar.
The research team conducted a multi-session experiment in which men and women performed metal polishing tasks in combination with a Universal Robot (UR10) collaborative robot using varying levels of robotic assistance under different states of cognitive fatigue. Participants were fatigued using a challenging visuospatial working memory task for an hour prior to performing the manufacturing tasks.
Each participant was evaluated for fatigue, situation awareness and workload through wearable physiological monitoring to determine three task performance metrics: task efficiency, accuracy and precision.
Overall, the research team found that the operator’s performance can be improved with increased assistance levels and that increased assistance allows for cognitive fatigue recovery.
Cognitive fatigue and automation levels influence different performance outcomes. Fatigue impeded the efficiency of the participants. Although the levels of accuracy and precision were not affected, it took them longer to complete the task.
“We also found that the female participants reported greater performance benefits from utilizing high automation, while the male participants did not perceive a benefit from the assistance, despite demonstrating comparable task performance,” Hopko said.
This finding is unique and important for robotic technology acceptance with Industry 4.0 advances as more industries are adopting collaborative robots in their work processes.
While increased performance and fatigue recovery are highlighted benefits of robotic assistance, it also showed that higher support reduced the situation awareness of participants by reducing their task engagement and mental stimulation.
Lower situation awareness can result in safety concerns. Thus, higher levels of automation warrant improved adaptivity to operator fatigue states while ensuring human-in-the-loop interactions.
There was also a strong correlation between situation awareness and automation observed in both heart rate variability signals and subjective measures.
“These findings highlight the potential of wearables to help communicate critical information from the operators to the robots,” Hopko said.
Ultimately, greater robotic assistance was able to improve accuracy and efficiency levels, but not precision. The consideration of the interplay between human factors, such as operator sex and their cognitive states, and robot factors on collaborative performance can lead to improved human-robot collaborative system designs.
“We hope to have collaboration between the operator and robot to be as robust to perturbing factors by providing this knowledge unobtrusively to robots to aid in the fluent human-robot adaptation process,” Hopko said.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Bluepath Robotics Optimizes AMR Fleets with Inductive Charging Solution from Wiferion
10/09/2025 | WiferionIn a dynamic and highly competitive industry such as logistics, efficient and uninterrupted material flows are of crucial importance. To ensure maximum uptime for its robots, Bluepath Robotics, which specializes in autonomous mobile robots (AMR), needed a reliable and powerful power supply.
Service Robots See Global Growth Boom
10/07/2025 | IFRThe total number of service robots sold for professional use reached almost 200,000 units in 2024, marking a 9% increase. Staff shortages are a key driver for companies to use robots designed for trained professionals.
Circuit Technology Center Expands Robotic Tinning Capacity with Two Additional Hentec/RPS Odyssey 1325 Machines
10/03/2025 | Circuit Technology CenterCircuit Technology Center, Inc., a leader in circuit board rework, repair, and modification, is pleased to announce the addition of two new Hentec/RPS Odyssey 1325 robotic hot solder dip component lead tinning machines to its production floor.
Global Robot Demand in Factories Doubles Over 10 Years
09/25/2025 | IFRThe new World Robotics 2025 statistics on industrial robots showed 542,000 robots installed in 2024 - more than double the number 10 years ago. Annual installations topped 500,000 units for the fourth straight year. Asia accounted for 74% of new deployments in 2024, compared with 16% in Europe and 9% in the Americas.
ABS, Persona AI Partner to Bring Humanoid Robotics to Shipyards, Advancing Safety and Productivity
09/24/2025 | BUSINESS WIREA groundbreaking collaboration to develop inspection technologies for Persona AI’s humanoid robot platform that enhances productivity and safety in shipyards was formalized today with the signing of an MOU between ABS and Persona AI.