Ford, Purdue Patent Charging Station Cable for Quick EV Charge Research
November 19, 2021 | Purdue UniversityEstimated reading time: 3 minutes
Ford and Purdue University researchers have taken an important early step to make recharging EVs simple and time saving.
Through a research alliance, researchers from both groups are working to develop a new, patent-pending charging station cable that could combine with in-development vehicle charging technology, making it even easier for people to transition to EVs with seamless re-charging.
“Today, chargers are limited in how quickly they can charge an EV’s battery due to the danger of overheating. Charging faster requires more current to travel through the charging cable,” said Michael Degner, senior technical leader, Ford Research and Advanced Engineering. “The higher the current, the greater the amount of heat that has to be removed to keep the cable operational.”
Purdue researchers are focusing on an alternative cooling method by designing a charging cable that can deliver an increased current. The cable uses liquid as an active cooling agent, which can help extract more heat from the cable by changing phase from liquid to vapor – the key difference between this and current liquid-cooled technology on the market.
This innovation could one day deliver significantly more power than today’s leading systems to re-charge electric vehicles, making the potential of faster re-charging times possible if vehicle charging and other technology enhancements are made in parallel. Ultimately, this could eventually lead to re-charging EVs as quickly as conventional gas station fill-ups.
The idea for this technology originated based on the Ford team’s understanding of the challenges faced going to faster charging rates, as well as Purdue researchers’ area of expertise. The teams collaborate regularly to review the latest results and give feedback on areas of focus as the technology is developed.
“Electric vehicle charging time can vary widely, from 20 minutes at a station to hours on an at-home charging station, and that can be a source of anxiety for people who are considering buying an electric vehicle,” said Issam Mudawar, Betty Ruth and Milton B. Hollander Family professor of mechanical engineering, Purdue University. “My lab has come up with a solution for situations where the amounts of heat that are produced are beyond the capabilities of today’s technologies.”
Mudawar says his lab intends to begin testing a prototype charging cable in the next two years to determine more specific charge speeds for certain models of electric vehicles.
“Ford is committed to making the transition to electrification easy,” said Degner. “We are glad to work closely with Purdue’s research team, which has the potential to make electric vehicle and commercial fleet ownership even more appealing and accessible.”
Electrifying young talent
The alliance with Ford and Purdue is part of hundreds of strategic alliances the company has with university professors around the world. Providing graduate students with opportunities to work on real world-challenges helps them develop their skills while introducing Ford to students who may choose to start their career at the company.
“The research that we are conducting in a project such as this is really advanced, and we view it as a benefit for us, the future of charging electric vehicles and as a pipeline to young talent – and we’ve seen success in doing this,” said Ted Miller, Ford’s manager of Electrification Subsystems and Power Supply Research. “Students get engaged, they like the work they’re doing, and it’s a sustained investment in their laboratories, while helping us solve problems.”
While the fast-charging cable won’t be on the market for some time as research continues, Mudawar has been developing ways to more efficiently cool electronics for the past 37 years by taking advantage of how liquid captures heat when boiled into a vapor.
“Ford has been actively involved in battery research and electric vehicles dating back to the days of Henry Ford and Thomas Edison,” Miller said. “We’ve secured more than 2,500 U.S. patents in electrification technologies and we have more than 4,000 more pending. Working with Professor Mudawar and his students is the perfect fit to help us research the charging solutions of the future.”
To see more on Purdue’s research, click here.
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.