University of Illinois Researchers Create Low-cost High-Yield Plastic Microprocessors
June 28, 2022 | University of IllinoisEstimated reading time: 2 minutes

Supercomputers can crunch massive data sets and give us insights into the wonders of the universe. But a sub-penny microprocessor that flexes to fit on a beer bottle and tells you whether your brew is still cold? Creating that technology has been surprisingly more difficult to achieve.
Recently, a team of researchers from the University of Illinois Urbana-Champaign said: hold my beer. Working with British flexible electronics manufacturer PragmatIC Semiconductor, the researchers developed the first commercially viable flexible plastic microprocessor chips, called FlexiCores, that can be manufactured at scale for less than a penny per unit.
The new processors could help even everyday objects become “smart.”
“For example, you could put processors on bandages to detect whether a wound is healing, or add them to consumer goods packaging to track progress along the supply chain,” said Rakesh Kumar, a professor of electrical and computer engineering and researcher in the Coordinated Science Lab at UIUC. “The challenge has been creating a processor that can be both cheaply produced and flexible enough to fit snugly even against uneven surfaces on our body, packages, or beer bottles.”
Researchers solved the problem in part by turning to plastic, instead of silicon, as the basis of the chips. Silicon is the industry standard for semiconductors, but it has inherent limitations due to its cost and its inflexibility. Kumar and his team built the FlexiCores on thin-film transistors made with the semiconductor indium gallium zinc oxide (IGZO), which works even when bent and is compatible with plastic.
The chip design was equally important in the pursuit of sub-penny plastic processors: in this case, less was more.
“Even the simplest modern chips are overkill for what we need them to be able to do for our target applications,” Kumar said. “Our FlexiCore chips look like 1970s silicon chips because we greatly reduced the number of components on them through careful design.”
The UIUC team tested 4-bit and 8-bit processors and found that the 4-bit processors produced a yield of 81%, which is high enough for the chips to be manufactured for less than a penny each. (“Yield” refers to the percentage of chips that work.) The 4-bit processor has 2,104 devices (transistors and resistors), which is far less than the 56,000-plus devices on a plastic ARM processor that debuted last year with much fanfare, but hasn’t been shown to be manufacturable at scale and does not run multiple programs, as FlexiCore can.
The low gate count in FlexiCores improves yield and reduces the “bill of materials”—the amount of material needed to produce each chip.
Kumar noted that the semiconductor industry has mostly been concerned with improving performance and power efficiency. With this research, he and his team are pioneering flexible electronics with new application frontiers. The research will be presented at the International Symposium on Computer Architecture later this month.
“These chips combine the flexibility and cost benefits of plastic technology with the high yield and low bill of materials enabled by our architecture,” he said. “It will be interesting to see where we go from here.”
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Elephantech's SustainaCircuits FPC Adopted for Mass Production in OM Digital Solutions’ Interchangeable Lens
10/06/2025 | ElephantechElephantech Inc. is pleased to announce that its proprietary flexible printed circuits (FPCs) have been adopted for mass production by OM Digital Solutions Corporation in the company’s latest flagship products.
Industry Expert, Mark Finstad From Flexible Circuit Technologies Presents Ask the Flexperts at PCB West
09/22/2025 | Flexible Circuit TechnologiesFlexible Circuit Technologies., Inc/FCT is excited to announce its upcoming session, Ask the Flexperts taking place Thursday, October 2nd, from 9:00–11:00 AM at PCB West 2025. The session will be led by Mark Finstad, Director or Applications Engineering at FCT, who brings over 40 years of experience in the design, fabrication, and testing of flexible and rigid-flex circuits. Mark is an internationally recognized authority in the field, making this a must-attend event for PCB designers, engineers, and industry professionals.
Printed Electronics Market Size to Top $83.77 Billion by 2034 Driven by IoT Adoption and Flexible Device Demand
09/11/2025 | Globe NewswireThe printed electronics market size has been calculated at U$19,920 million in 2025 and is expected to grow from $23,58 million in 2026 to approximately $83,770 million by 2034.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Flexible PCB Output Expected to Surpass $20 Billion by 2025, with AI Glasses Emerging as a New Growth Driver
08/25/2025 | TPCAThe Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute (ITRI) released the "2025 Global Flexible PCB Industry Outlook" in August.