Perovskite PV: IDTechEx Discusses Resolving the Stability Challenge
July 26, 2022 | PRNewswireEstimated reading time: 2 minutes

Perovskite PV is an exciting new solar power technology. In 2009, the first report of a perovskite solar cell was published with an efficiency of just 3.9%. Just 10 years later, the record efficiencies surpassed 25% - comparable to conventional silicon technology following decades of research. Given the novelty of the technology, the rapid gains in efficiency are impressive; however, high efficiency is not the only promising attribute. Perovskite solar modules are significantly lighter than conventional silicon modules and can even be fabricated on flexible lightweight substrates. Versatility in module design makes them well-suited to a wide range of emerging applications such as self-powered electronics and Internet of Things devices. The new report published by IDTechEx, "Perovskite Photovoltaics 2023-2033", explores the commercialization potential of perovskite PV and identify the challenges remaining.
What is perovskite PV?
Perovskites refer to a family of materials with a specific material structure. The class of perovskites used in photovoltaics (PV) have a unique combination of electronic and optical properties that make it extremely well-suited to PV technology. Perovskite PV can provide similarly high-power density as silicon PV at lower cost, a fraction of the weight, and with a simpler manufacturing process. It can also be combined with silicon to create tandem cell architectures that can surpass the efficiency limits of single junction solar cells.
Efficiency gains dampened by stability concerns
Despite the demonstration of high-efficiency perovskite modules, commercial adoption has been inhibited by concerns over long-term stability. Instability has a severely damaging effect on the electronic and optical properties of the module. There exist several sources of degradation that impact the stability and longevity of a perovskite module. These can be divided into two categories – intrinsic and extrinsic. Intrinsic instability is caused by defects and the migration of ions through the cell layers. Extrinsic instability is a result of contamination from the atmosphere, such as heat, moisture, oxygen, and UV radiation.
How can the stability challenge be resolved? There are two methods. The first is to encapsulate the cell to prevent the ingress of environmental elements. The transmittance rates of oxygen and water must be extremely low, and the encapsulant material must be optically transparent to visible light and ideally non-transparent to UV light. In the IDTechEx report, "Perovskite Photovoltaics 2023-2033", different conventional and emerging encapsulation methods are identified and benchmarked by their suitability. The second method involves tuning the perovskite's chemical composition to improve the resistance of the material. As the saying goes, nothing good comes for free. Modifying the chemical composition can improve the stability of the solar cell but may impact other properties such as efficiency and absorption spectrum. Encapsulation techniques and material engineering are crucial to preventing the degradation of the perovskite film. Solving these high-value problems is a compelling commercial opportunity.
Progress and Route to Commercialization
Resolving perovskite PV stability issues is challenging, with many strategies bringing performance trade-offs or extra costs. Nevertheless, the field has come a long way in its understanding of degradation mechanisms, and substantial progress has been made. Advancements in stabilizing perovskite solar cells have helped to transition the technology from academia to industry. Several companies, such as Oxford PV and Saule Technologies, are poised to enter the unestablished perovskite PV market within the next 2-3 years, with pilot studies and trials currently in progress.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Nvidia’s PCB Vendor Victory Giant Plans to Raise Funds in Hong Kong IPO
08/07/2025 | I-Connect007 Editorial TeamNvidia supplier Victory Giant Technology, based in Huizhou, Guangdong, China, released plans at the end of July for a Hong Kong share offering. The move came after regulators eased fundraising rules to support high-tech companies, the South China Morning Post reported.
Curtiss-Wright Signs Strategic Partnership With Rolls-Royce SMR for Its Small Modular Reactor Technology
08/04/2025 | BUSINESS WIRECurtiss-Wright Corporation announced that its UK-based Curtiss-Wright Nuclear business (formerly Ultra Energy) signed a multi-million dollar strategic partnership with Rolls-Royce SMR to deliver critical safety systems for its Small Modular Reactor (SMR) technology. Under the contract, Curtiss-Wright will provide design, qualification, testing and supply of the non-programmable diverse Reactor Protection Systems for a global fleet of Rolls-Royce SMRs.
Brent Laufenberg Appointed CIO of the Global Electronics Association, Advancing Technology and Member Services
07/31/2025 | Global Electronics AssociationThe Global Electronics Association (formerly IPC International Inc.) announces the appointment of Brent Laufenberg as its new Chief Information Officer (CIO).
Microchip Enters into Partnership Agreement with Delta Electronics on Silicon Carbide Solutions
07/18/2025 | Globe NewswireThe growth of artificial intelligence (AI) and the electrification of everything are driving an ever-increasing demand for higher levels of power efficiency and reliability.
ViTrox’s HITS 5.0 Empowers Global Partners with Innovative Solutions and Stronger Bonds
07/16/2025 | ViTroxViTrox, strives to be the World’s Most Trusted Technology Company, proudly announces the successful conclusion of its fifth edition of High Impact Training for Sales (HITS 5.0), held from 23rd to 27th June 2025 at ViTrox Campus 2.0 and 3.0, located in Batu Kawan Industrial Park, Penang, Malaysia.