-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
3D Electronic Devices With Additive Manufacturing
November 29, 2022 | Shavi Spinzi, Nano DimensionEstimated reading time: 1 minute
Imagine fabricating PCBs without the hassle of drilled vias and metal plating. Imagine PCBs with near-perfect registration. If we take it to the next stage, imagine drawing electronics in 3D space.
There is a way to do all this with additively manufactured electronics (AME). We just need to start to think in 3D. This will allow us to abandon the 2D limitations that we have become so used to and expand our horizons so that we can climb to higher levels of performance.
In this article, I will explore the two fundamental capabilities that are the cornerstones for drawing electronics in 3D space, which is where AME technology and 3D design capabilities converge.
The First Cornerstone of AME: Isolation and Conductive Materials
More than a decade ago, we saw the rise of printed electronics (PE), which is printing of conductive traces on a predefined substrate. The substrate is fixed, can be planar or a 3D shape and the printing process—either inkjet, aerosol jetting, or any other method—places the conductor on top of it.
AME differs from PE because it uses more than one material. The simplest configuration for AME consists of two materials: one conductive and one isolation/dielectric. It has the potential to grow to more than two materials by adding combinations of different conductive and isolation materials as well as sacrificial materials to build channels and different complex structures.
Why Do We Need 3D PCB Structures?
The first stage of AME was to imitate traditional PCB 2D structures by building multilayer boards (MLB), plated through-holes (PTH), and microvias to prove that AME can replace "traditional" PCB processes. It certainly is doable, but it does not achieve the full potential and capabilities of 3D AME.
To read this entire article, which appeared in the November 2022 issue of PCB007 Magazine, click here.
Suggested Items
Welcome to the Newest I-Connect007 Columnist Brittany Martin
01/14/2025 | I-Connect007 Editorial TeamIn today’s fast-paced world of electronics marketing, staying ahead of the curve requires creativity, strategy, and a deep understanding of evolving trends. Enter Brittany Martin, I-Connect007’s newest columnist and the voice behind "The Marketing Minute."
Würth Elektronik at PEDC 2025
01/14/2025 | Wurth ElektronikOn January 29 to 30, 2025, the Pan-European Electronics Design Conference (PEDC) will convene leading experts from industry and research in Vienna.
Argonne to Lead Two Microelectronics Research Projects Under U.S. Department of Energy Initiative
01/13/2025 | BUSINESS WIREThe U.S. Department of Energy’s (DOE) Argonne National Laboratory is managing two microelectronics studies that will support multidisciplinary codesign of hardware and software and enable processing of vast quantities of data at unprecedented speeds.
IKT Electronics Chooses TRI's X-ray Technology
01/13/2025 | TRIIKT Electronics, a leader in innovative electronics manufacturing, proudly announces the expansion of its production capabilities with the integration of Test Research, Inc.'s (TRI) cutting-edge X-ray inspection system, the TR7600F3D SII.
Global Automated Optical Inspection Systems Industry Revolutionize Electronics Manufacturing with Advanced Quality Control
01/13/2025 | Globe NewswireThe global automated optical inspection (AOI) system market is poised for substantial growth, with sales estimated at USD 849.5 million in 2024 and projected to reach USD 2,067.0 million by 2034.