First Deep Space Biology Experiment Begins, Follow Along in Real-Time
December 16, 2022 | NASAEstimated reading time: 1 minute

NASA’s BioSentinel has carried living organisms farther from Earth than ever before – more than one million miles. Aboard the shoebox-sized CubeSat are microorganisms, in the form of yeast – the very same yeast that makes bread rise and beer brew. On Dec. 5, BioSentinel was 655,730 miles from Earth when the BioSentinel team at NASA’s Ames Research Center in California’s Silicon Valley sent commands to the spacecraft to kick off the initial experiment for the first long-duration biology study in deep space. Scientists are now able to see how living organisms respond to deep space radiation.
Artemis missions at the Moon will prepare humans to travel on increasingly farther and longer-duration missions to destinations like Mars. Because yeast cells have similar biological mechanisms to human cells, including DNA damage and repair, studying yeast in space will help us better understand the risks of space radiation to humans and other biological organisms. BioSentinel’s science results will fill critical gaps in knowledge about the health risks in deep space posed by space radiation.
BioSentinel – which launched aboard Artemis I – is orbiting the Sun, positioned beyond Earth’s protective magnetic field. There, the CubeSat will run a series of experiments over the next five to six months.
NASA invites the public to virtually ride along with BioSentinel’s deep space journey using NASA’s “Eyes on the Solar System” visualization tool, a digital model of the solar system. This real-time simulated view of our solar system runs on real data. The positions of the planets, moons, and spacecraft – including BioSentinel – are shown where they are right now.
You can adjust the level of illumination on the spacecraft by clicking on the show/hide settings button in the bottom right of the screen. Once opened, you can toggle between flood, shadow, and natural lighting. Additionally, you can use time controls – at the bottom of the screen – to fast-forward or rewind time in the simulated view, to preview BioSentinel’s future trajectory or see a recap of its prior path.
Suggested Items
Specially Developed for Laser Plastic Welding: Thermography with TherMoPro Opens New Possibilities
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
IBM, RIKEN Unveil First IBM Quantum System Two Outside of the U.S.
06/24/2025 | IBMIBM and RIKEN, a national research laboratory in Japan, today unveiled the first IBM Quantum System Two ever to be deployed outside of the United States and beyond an IBM Quantum Data Center.
Excellon Installs COBRA Hybrid Laser at Innovative Circuits
06/23/2025 | ExcellonExcellon is pleased to announce the successful installation of a second COBRA Hybrid Laser System at Innovative Circuits, located in Alpharetta, Georgia. The Excellon COBRA Hybrid Laser System uniquely combines both UV and CO₂ (IR) laser sources on a single platform—making it ideal for high-density prototype and production printed circuit boards (PCBs).
Smart Automation: The Power of Data Integration in Electronics Manufacturing
06/24/2025 | Josh Casper -- Column: Smart AutomationAs EMS companies adopt automation, machine data collection and integration are among the biggest challenges. It’s now commonplace for equipment to collect and output vast amounts of data, sometimes more than a manufacturer knows what to do with. While many OEM equipment vendors offer full-line solutions, most EMS companies still take a vendor-agnostic approach, selecting the equipment companies that best serve their needs rather than a single-vendor solution.