-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Averatek to Present Paper on 'Thermal Stress Reliability of Novel Process' at IPC APEX EXPO 2023
January 23, 2023 | AveratekEstimated reading time: 1 minute

Averatek is pleased to announce that Director of Advanced Process Development Gus Karavakis will present “Thermal Stress Reliability of Stacked Microvias Fabricated with a Liquid Metal Ink Semi-Additive Process” at the IPC APEX Expo Technical Conference, January 24-26, 2023 in the San Diego Convention Center. The technical paper was co-authored by Mike Carano, IPC Technology Roadmap Committee Chair and member of the Board of Directors.
The drive to miniaturization makes the smaller footprint of stacked vias more desirable in terms of routing and design efficiency than staggered vias. However, there is evidence that stacked vias are prone to latent failures after exposure to thermal stress of conventional surface mount technology (SMT) reflow processes. This issue is broadly defined as a weak interface between the plated copper and the blind via target pad. When thermally stressed, the generally weak interface will fracture, especially during forced-convection assembly reflow.
While many studies of microvia interfacial fracture focused on conventional electroless copper as the plated through-hole (PTH) choice, no recent studies measured the reliability of stacked microvias with a semi-additive process (SAP) using a liquid metal ink as the catalytic layer.
This novel catalytic ink promotes a tightly adherent and ultrathin electroless copper deposit. The lower thickness enables much finer line spaces and trace widths than conventional subtractive-etch or modified semi-additive processes (mSAP). Liquid metal ink technology enables capability for 5micron lines and spaces; the tighter line width control will benefit the impedance control.
To measure reliability of the liquid metal ink process, test vehicles were constructed and subjected to Thermal Shock and Thermal Stress testing, according to protocols in IPC-TM-650 Test Method 2.6.27B. Complete results of this study will be covered in the presentation.
Test results indicate that the liquid metal ink process provides long-term reliability on two-stack blind vias, while offering distinct functionality advantages beyond conventional subtractive and mSAP processes.
Gus Karavakis has over 30 years of industry experience, with special expertise in advanced processes, additive technologies, IC Packaging and substrates, flex and rigid-flex PCB manufacturing and materials. He is the author/co-author of more than 80 patents, and holds a BE in Chemical Engineering from CCNY with an MS in Chemical Engineering from Columbia University.
Suggested Items
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.
The Chemical Connection: Surface Finishes for PCBs
03/31/2025 | Don Ball -- Column: The Chemical ConnectionWriting about surface finishes brings a feeling of nostalgia. You see, one of my first jobs in the industry was providing technical support for surface cleaning processes and finishes to enhance dry film adhesion to copper surfaces. I’d like to take this opportunity to revisit the basics, indulge in my nostalgia, and perhaps provide some insight into why we do things the way we do them in the here and now.
NUS Physicists Discover a Copper-free High-temperature Superconducting Oxide
03/28/2025 | PRNewswireProfessor Ariando and Dr Stephen Lin Er Chow from the National University of Singapore (NUS) Department of Physics have designed and synthesised a groundbreaking new material—a copper-free superconducting oxide—capable of superconducting at approximately 40 Kelvin (K), or about minus 233 degrees Celsius (deg C), under ambient pressure.